Slides adapted from Prof Carpuat and Duraiswami

CMSC 422 Introduction to Machine Learning Lecture 15 A Probabilistic View of Machine Learning I

Furong Huang / furongh@cs.umd.edu

UNIVERSITY OF MARYLAND

Approximating the 0-1 loss with surrogate loss functions

Examples (with b = 0) Hinge loss $[1 - y_n \mathbf{w}^T \mathbf{x}_n]_+ = \max\{0, 1 - y_n \mathbf{w}^T \mathbf{x}_n\}$ Log loss $\log[1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n)]$ Exponential loss $\exp(-y_n \mathbf{w}^T \mathbf{x}_n)$

FEARLESS

What if $b \neq 0$?

Example: subgradient of hinge loss

For a given example n

$$\partial_{w} \max\{0, 1 - y_{n}(w \cdot x_{n} + b)\}$$

$$= \partial_{w} \begin{cases} 0 & \text{if } y_{n}(w \cdot x_{n} + b) > 1 \\ -y_{n}(w \cdot x_{n} + b) & \text{otherwise} \end{cases}$$

$$= \begin{cases} \partial_{w} 0 & \text{if } y_{n}(w \cdot x_{n} + b) > 1 \\ -\partial_{w} y_{n}(w \cdot x_{n} + b) & \text{otherwise} \end{cases}$$

$$= \begin{cases} 0 & \text{if } y_{n}(w \cdot x_{n} + b) > 1 \\ -y_{n} x_{n} & \text{otherwise} \end{cases}$$

$$(6.22)$$

Subgradient Descent for Hinge Loss

Algorithm 23 HINGEREGULARIZEDGD(D, λ , MaxIter)

1:
$$w \leftarrow \langle 0, 0, \dots 0 \rangle$$
, $b \leftarrow 0$
2: for iter = 1 ... MaxIter do
3: $g \leftarrow \langle 0, 0, \dots 0 \rangle$, $g \leftarrow 0$
4: for all $(x,y) \in D$ do
5: if $y(w \cdot x + b) \leq 1$ then
6: $g \leftarrow g + y x$
7: $g \leftarrow g + y x$
8: end if
9: end for
10: $g \leftarrow g - \lambda w$
11: $w \leftarrow w + \eta g$
12: $b \leftarrow b + \eta g$
13: end for
14: return w, b

// initialize weights and bias

// initialize gradient of weights and bias

// update weight gradient
// update bias derivative

// add in regularization term // update weights // update bias

What is the perceptron optimizing?

Algorithm 5 PERCEPTRONTRAIN(**D**, *MaxIter*) 1: $w_d \leftarrow o$, for all $d = 1 \dots D$ // initialize weights $2: b \leftarrow 0$ // initialize bias \therefore for *iter* = 1 ... MaxIter do for all $(x,y) \in \mathbf{D}$ do 4: $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$ 5: // compute activation for this example if $ya \leq o$ then 6: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ // update weights 7: $b \leftarrow b + y$ // update bias 8: end if 9: end for 10: **in** end for ^{12:} **return** w_0, w_1, \ldots, w_D, b

Loss function is a variant of the hinge loss $\max\{0, -y_n(\mathbf{w}^T\mathbf{x}_n + b)\}$

Recap: Linear Models

Lets us separate model definition from training algorithm (Gradient Descent)

Summary

Gradient descent

- A generic algorithm to minimize objective functions Works well as long as functions are well behaved (ie convex)
- Subgradient descent can be used at points where derivative is not defined
- Choice of step size is important

Optional: can we do better?

For some objectives, we can find closed form solutions (see CIML 6.6)

Today's topics

- Bayes rule review
- A probabilistic view of machine learning
 - Joint Distributions
 - Bayes optimal classifier
- Statistical Estimation
 - Maximum likelihood estimates
 - Derive relative frequency as the solution to a constrained optimization problem

Bayes Rule

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule

we call P(A) the "prior"

and P(A|B) the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London,* **53:370-418**

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning*...

Exercise: Applying Bayes Rule

Consider the 2 random variables

- A = You have the flu
- B = You just coughed
- Assume
 - P(A) = 0.05P(B|A) = 0.8P(B|not A) = 0.2

What is P(A|B)?

Answer

Via Logic

Assume 100 students – 5 have the flu. 80% (4) of the students who have the flu cough; 20% (19) of the students who don't have the flu cough; So the chance that you have the flu is 4/23

Via Bayes Rule

- ✓ P(A|B)P(B)=P(B|A)P(A).
- ✓ P(B)=0.8*0.05+0.2*(1-0.05)=0.04+0.19=0.23
- ✓ P(A|B)=0.8*0.05/0.23 =0.04/0.23=4/23

Using a Joint Distribution

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

Using a Joint Distribution

gender	hours_worked	wealth		
Female	v0:40.5-	poor	0.253122	
		rich	0.0245895	
	v1:40.5+	poor	0.0421768	
		rich	0.0116293	
Male	v0:40.5-	poor	0.331313	
		rich	0.0971295	
	v1:40.5+	poor	0.134106	
		rich	0.105933	

Given the joint distribution, we can find the probability of any logical expression E involving these variables

 $P(E) = \sum_{i=1}^{n} P(row)$ rows matching E

Using a Joint Distribution

gender	hours_worked	wealth		
Female	v0:40.5-	poor	0.253122	Given the joint distribution.
		rich	0.0245895	J enne and a near in entry
v1: Male v0: v1:	v1:40.5+	poor	0.0421768	we can make inferences
		rich	0.0116293	E.g., P(Male Poor)?
	v0:40.5-	poor	0.331313	
		rich	0.0971295	Or P(Wealth Gender, Hours)?
	v1:40.5+	poor	0.134106	
		rich	0.105933	

Recall: Machine Learning as Function Approximation

Problem setting

- Set of possible instances X
- Unknown target function $f: X \to Y$
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$

Input

Training examples { (x⁽¹⁾, y⁽¹⁾), ... (x^(N), y^(N)) } of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

Recall: Formal Definition of Binary Classification (from CIML)

TASK: BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x) \neq y]$

The Bayes Optimal Classifier

Assume we know the data generating distribution $\ensuremath{\mathcal{D}}$

We define the Bayes Optimal classifier as

$$f^{(\mathsf{BO})}(\hat{x}) = rg\max_{\hat{y}\in\mathcal{Y}}\mathcal{D}(\hat{x},\hat{y})$$

Theorem: Of all possible classifiers, the Bayes Optimal classifier achieves the smallest zero/one loss

Bayes error rate

Defined as the error rate of the Bayes optimal classifier Best error rate we can ever hope to achieve under zero/one loss

The Bayes Optimal Classifier

Assume we know the data generating distribution $\ensuremath{\mathcal{D}}$

We define the Bayes Optimal classifier as

we don't have access to \mathcal{D} So let's try to estimate it instead! fier

Bay

R

What does "training" mean in probabilistic settings?

- Training = estimating \mathcal{D} from a finite training set
 - We typically assume that D comes from a specific family of probability distributions
 - e.g., Bernouilli, Gaussian, etc
 - Learning means inferring parameters of that distributions
 - e.g., mean and covariance of the Gaussian

Training assumption: training examples are iid

Independently and Identically distributed

- i.e. as we draw a sequence of examples from D, the n-th draw is independent from the previous n-1 sample
- This assumption is usually false!
 - But sufficiently close to true to be useful

How can we estimate the joint probability distribution from data? What are the challenges?

Maximum Likelihood Estimation

 Find the parameters that maximize the probability of the data

 Example: how to model a biased coin? (on board)

Maximum Likelihood Estimation

Example: how to model a k-sided die? (on board)

Today's topics

Bayes rule review

A probabilistic view of machine learning Joint Distributions Bayes optimal classifier

Statistical Estimation

Maximum likelihood estimates Derive relative frequency as the solution to a constrained optimization problem

Furong Huang 3251 A.V. Williams, College Park, MD 20740 301.405.8010 / furongh@cs.umd.edu