Slides adapted from Prof Carpuat and Duraiswami

7 O\

CMSC 422 e Learning
Lecture 17 Unsupervised Learning

— Principal Component Analysis
W Y . N N

Furong Huang / furongh@cs.umd.edu

=

G

UNIVERSITY OF

MARYLAND



Unsupervised Learning

Discovering hidden structure in data

What algorithms do we know for

unsupervised learning?
K-Means Clustering

Today:. how can we learn better
representations of our data points?
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Dimensionality Reduction

Goal: extract hidden lower-dimensional
structure from high dimensional datasets

Why?
To visualize data more easily

0O remove noise in data

‘0 lower resource requirements for
storing/processing data

To improve classification/clustering
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Examples of data points in D dimensional space
that can be effectively represented in a d-
dimensional subspace (d < D)
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Principal Component Analysis

Goal: Find a projection of the data onto
directions that maximize variance of the

original data set

Intuition: those are directions in which most
information is encoded

Definition: Principal Components are
orthogonal directions that capture most of
the variance in the data
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PCA: finding principal components

15t PC

Projection of data points along 15t PC
discriminates data most along any one
direction

2nd PC

next orthogonal direction of greatest
variability

And so on...
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PCA: notation

Data points
Represented by matrix X of size NxD
X; is the i-th row, I.e., the i-th example
X;; is the value of j-th feature for example |

Let's assume data is centered, i.e., }; X; = 0

Principal components are d vectors: vy, v,, ... 74
vl-ij =0,i #j and vl-Tvl- =1,V1

The sample variance data projected on vector v is
T
o1 (xi v)? = (Xv)" (Xv)
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PCA formally

Finding vector that maximizes sample
variance of projected data:

argmax, v X' Xv such that viv = 1

A constrained optimization problem(method of

Lagrange multipliers)
-Lagrangian folds constraint into objective:
argmax, vV' X' Xv — 2A(v'v —1)
-Solutions are vectors v such that X* Xv = Av
-i.e. eigenvectors of XT X(sample covariance matrix)
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Lagrange Multiplier

A strategy for finding the local maxima and minima of a
function subject to equality constraints

Consider the optimization problem
max f (v)
%
Subjectto g(v) =0

Introduce a new variable A called a Lagrange
multiplier

Study the Lagrange (Lagrangian) function
L(v,4) = f(v) —Ag(V)
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Relationship between PCA and Eigen
Value Decomposition

argmax, v X" Xv — 2A(vTv — 1) (*)
where X is the N by D data matrix

For this optimization problem, taking

derivative with respect to v, set the gradient

to O to solve for the stationary point

XT'Xv — lv=0

Therefore the eigenvector of covariance

matrix X! X is a stationary point of the

optimization problem (*).
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PCA formally

- The eigenvalue A denotes the amount of variability
captured along dimension v

Sample variance of projection v XT Xv = A

If we rank eigenvalues from large to small

The 15t PC is the eigenvector of X X associated with
largest eigenvalue

The 2 PC is the eigenvector of X! X associated with
2"d largest eigenvalue
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Alternative interpretation of PCA

PCA finds vectors v such that projection
on to these vectors minimizes
reconstruction error

1 & T >
= % — (vix)V| Ve ox
"i=1
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Resulting PCA algorithm

Algorithm 36 PCA( X, K)
. Y 4 MEAN(X) // compute data mean for centering

2 D < (X — ;ulT) T (X — le) /I compute covariance, 1 is a vector of ones

3 { A, ur} < top K eigenvalues/eigenvectors of D
¢ return (X—ul1)U /| project data using U

@ MARYLAND FEARLESS IDEAS



How to choose the hyperparameter K?

l.e. the number of dimensions

(%)

Variance

Tl mEmE =

PC1 PC2 PC3 PC4 PCS5 PC6 PC7/ PC8 PC9 PC10

We can ignore the components of smaller
significance
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An example: Eigenfaces

Eigenfaces
from 7562
Images:

top left image
Is linear

combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)
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PCA pros and cons

Pros

Eigenvector method
No tuning of the parameters
No local optima

Cons
Only based on covariance (2"9 order statistics)
Limited to linear projections
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What you should know

Principal Components Analysis

Goal: Find a projection of the data onto directions
that maximize variance of the original data set

PCA optimization objectives and resulting
algorithm

Why this is useful!
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