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Unsupervised Learning

Discovering hidden structure in data

What algorithms do we know for 
unsupervised learning?

K-Means Clustering

Today:  how can we learn better 
representations of our data points?



Dimensionality Reduction

Goal: extract hidden lower-dimensional 
structure from high dimensional datasets

Why?
To visualize data more easily
To remove noise in data
To lower resource requirements for 
storing/processing data
To improve classification/clustering



Examples of data points in D dimensional space 
that can be effectively represented in a d-
dimensional subspace (d < D)



Principal Component Analysis

Goal: Find a projection of the data onto 
directions that maximize variance of the 
original data set

Intuition: those are directions in which most 
information is encoded

Definition: Principal Components are 
orthogonal directions that capture most of 
the variance in the data



PCA: finding principal components

1st PC
Projection of data points along 1st PC 
discriminates data most along any one 
direction

2nd PC
next orthogonal direction of greatest 
variability

And so on…



PCA: notation

Data points
Represented by matrix X of size NxD
!! is the i-th row, i.e., the i-th example
!!" is the value of j-th feature for example i
Let’s assume data is centered, i.e., ∑!!! = 0

Principal components are d vectors:  #%, #&, … #'
(!&(" = 0, * ≠ , and #!"#! = 1, ∀ *

The sample variance data projected on vector v is
∑!,-. (0!1#)3 = 4# 1 4#



PCA formally

Finding vector that maximizes sample 
variance of projected data:

!"#$!%& '()( )' such that '(' = 1

A constrained optimization problem(method of 
Lagrange multipliers)

§Lagrangian folds constraint into objective: 
!"#$!%! '")" )' − -('"' − 1)
§Solutions are vectors v such that )" )' = -'

§i.e. eigenvectors of !" !(sample covariance matrix)



Lagrange Multiplier

• A strategy for finding the local maxima and minima of a 
function subject to equality constraints

• Consider the optimization problem
max! $(&)

Subject to ( & = 0
• Introduce a new variable + called a Lagrange 

multiplier
• Study the Lagrange (Lagrangian) function

ℒ &, + = $ & − +((&)



Relationship between PCA and Eigen 
Value Decomposition 

!"#$!%& '()( )' − + '(' − 1 (*)
where X is the N by D data matrix

• For this optimization problem, taking 
derivative with respect to v, set the gradient 
to 0 to solve for the stationary point

)! )' − +' = 0
• Therefore the eigenvector of covariance 

matrix )( ) is a stationary point of the 
optimization problem (*).



PCA formally

• The eigenvalue ! denotes the amount of variability 
captured along dimension "
Sample variance of projection "!#! #" = !

If we rank eigenvalues from large to small
The 1st PC is the eigenvector of #! # associated with 
largest eigenvalue
The 2nd PC is the eigenvector of #! # associated with 
2nd largest eigenvalue
…



Alternative interpretation of PCA

PCA finds vectors v such that projection 
on to these vectors minimizes 
reconstruction error



Resulting PCA algorithm

X



How to choose the hyperparameter K?

i.e. the number of dimensions

We can ignore the components of smaller 
significance



An example: Eigenfaces



PCA pros and cons

Pros
Eigenvector method
No tuning of the parameters
No local optima

Cons
Only based on covariance (2nd order statistics)
Limited to linear projections



What you should know

Principal Components Analysis

Goal: Find a projection of the data onto directions 
that maximize variance of the original data set

PCA optimization objectives and resulting 
algorithm

Why this is useful!
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