
CMSC 422 Introduction to Machine Learning
Lecture 19 Neural Networks II

Furong Huang / furongh@cs.umd.edu

Slides adapted from Prof Carpuat and Duraiswami

Neural Networks

Last time

What are Neural Networks? (key components)

How to make a prediction given an input?

Why are neural networks powerful?

Neural Networks

Last time
What are Neural Networks?

Multilayer perceptron
How to make a prediction given an input?

Simple matrix operations + nonlinearities
Why are neural networks powerful?

Universal function approximators!

Today
how to train neural networks?

Example: a neural network to solve the
XOR problem

X

O

O

X

φ0(x2) = {1, 1}φ0(x1) = {-1, 1}

φ0(x4) = {1, -1}φ0(x3) = {-1, -1}

1
1
-1

-1
-1
-1

φ1

φ2

φ1[1]

φ1[0]

φ1[0]

φ1[1]

φ1(x1) = {-1, -1}
X O

φ1(x2) = {1, -1}

O

φ1(x3) = {-1, 1}

φ1(x4) = {-1, -1}

Example
●In new space, the examples are linearly separable!

X

O

O

X

φ0(x2) = {1, 1}φ0(x1) = {-1, 1}

φ0(x4) = {1, -1}φ0(x3) = {-1, -1}

1
1
-1

-1
-1
-1

φ0[0]

φ0[1]

φ1[1]

φ1[0]

φ1[0]

φ1[1]

φ1(x1) = {-1, -1}X O φ1(x2) = {1, -1}

Oφ1(x3) = {-1, 1}

φ1(x4) = {-1, -1}

-1
-1
-1

φ2[0] = y

Example

●The final net

tanh

tanh

φ0[0]

φ0[1]

1

φ0[0]

φ0[1]

1

1
1

-1

-1
-1

-1
1 -1

-1

-1

tanh

φ1[0]

φ1[1]

φ2[0]

Activation Functions

• Examples:

• Sign: s"#$(&) =)
−1, & < 0
0, & = 0
1, & > 0

• Tanh: tanh & = 456475
458475 =

4956:
4958:

• Derivative: ;<= tanh & = 1 − tanh>(&)

Activation Functions

• Sigmoid: ! " = $
$%&'(=

&(
$%&(, logistic function

• Derivative:))* ! " = &(
$%&(= ! " (1 − ! ")

Activation Functions

• Relu: !"#$ % = %' = max(0, %) rectified
linear unit
• A smooth approximation: softplus

/ % = log(1 + exp %)
• The derivative of softplus is logistic function /7 % = 89

:'89

Exercise

• Learn softmax function
https://en.wikipedia.org/wiki/Softmax_fu
nction

https://en.wikipedia.org/wiki/Softmax_function

Forward Propagation:
given input x, compute network output

Neural Network Training

Backpropagation algorithm
=

Gradient descent + Chain rule

Recall: gradient descent
for linear classifiers

Objective function
to minimize

Number of
steps Step size

What’s our Training Objective?

We’ll consider the following objective

i.e. our goal is to find parameters W, v that minimize
squared error

Other objectives are possible (e.g., other loss
functions, add regularizer)

Backprop in a 2-layer network

Backprop in a 2-layer network

Compute Gradient G and g

What’s our Training Objective?

We’ll consider the following objective

i.e. our goal is to find parameters W, v that minimize
squared error

Other objectives are possible (e.g., other loss
functions, add regularizer)

Gradient of objective
w.r.t. output layer weights v

Error at example n:
!" − $!"

Vector of activations
of hidden units for

example n

Gradient of objective
w.r.t. hidden unit weights !"

(This is on one example only)

Chain rule

Backprop in a 2-layer network

Forward
propagation

Update
gradients

Update
parameters

Tricky issues with
neural network training
Sensitive to initialization

Objective is non-convex, many local optima
In practice: start with random values rather than
zeros

Many other hyperparameters
Number of hidden units (and potentially hidden
layers)
Gradient descent learning rate
Stopping criterion

Neural networks
vs. linear classifiers

Advantages of Neural Networks:
More expressive
Less feature engineering

Inconvenients of Neural Networks:
Harder to train
Harder to interpret

Neural Network Architectures

We focused on a 2-layer feedforward
network

Other architectures are possible
More than 2 layers (aka deep learning)
Recurrent network (i.e. network has cycles)
Can still be trained with backpropagation

But more issues arise when networks get more complex
(e.g., vanishing gradients)

Try different architectures and training
parameters here:

http://playground.tensorflow.org

What you should know

What are Neural Networks?
Multilayer perceptron

How to make a prediction given an input?
Forward propagation: Simple matrix operations + nolinearities

Why are neural networks powerful?
Universal function approximators!

How to train neural networks?
The backpropagation algorithm

Furong Huang
3251 A.V. Williams, College Park, MD 20740

301.405.8010 / furongh@cs.umd.edu

