Slides adapted from Prof Carpuat and Duraiswami

Furong Huang / furongh@cs.umd.edu

UNIVERSITY OF MARYLAND

Neural Networks

Last time

What are Neural Networks? (key components)

How to make a prediction given an input?

Why are neural networks powerful?

Neural Networks

Last time

What are Neural Networks?
Multilayer perceptron
How to make a prediction given an input?
Simple matrix operations + nonlinearities
Why are neural networks powerful?
Universal function approximators!

Today

how to train neural networks?

Example: a neural network to solve the XOR problem

Example

In new space, the examples are linearly separable!

Example

.The final net

Activation Functions

Activation Functions

• Sigmoid: $\sigma(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{1+e^x}$, logistic function

• Derivative:
$$\frac{d}{dx}\sigma(x) = \frac{e^x}{1+e^x} = \sigma(x) (1 - \sigma(x))$$

Activation Functions

- Relu: $relu(x) = x^+ = max(0, x)$ rectified linear unit
 - A smooth approximation: softplus $f(x) = \log(1 + \exp x)$
 - The derivative of softplus is logistic function $f'(x) = \frac{e^x}{1+e^x}$

Exercise

 Learn softmax function <u>https://en.wikipedia.org/wiki/Softmax_fu</u> <u>nction</u>

Forward Propagation: given input x, compute network output

Algorithm 24 TwoLayerNetworkPredict(\mathbf{W}, v, \hat{x})

- 1: for i = 1 to number of hidden units do
- $_{2:}$ $h_i \leftarrow \tanh(\boldsymbol{w}_i \cdot \hat{\boldsymbol{x}})$

// compute activation of hidden unit i

- 3: end for
- 4: return $v \cdot h$

// compute output unit

Neural Network Training

Backpropagation algorithm

Gradient descent + Chain rule

Recall: gradient descent for linear classifiers

What's our Training Objective?

We'll consider the following objective

$$\min_{\mathbf{W},v} \quad \sum_{n} \frac{1}{2} \left(y_n - \sum_{i} v_i f(\boldsymbol{w}_i \cdot \boldsymbol{x}_n) \right)^2$$

i.e. our goal is to find parameters $\boldsymbol{W},$ v that minimize squared error

Other objectives are possible (e.g., other loss functions, add regularizer)

Backprop in a 2-layer network

Algorithm 25 TwoLayerNetworkTrain(\mathbf{D} , η , K, *MaxIter*) $W \leftarrow D \times K$ matrix of small random values // initialize input layer weights $_{2}$: $v \leftarrow K$ -vector of small random values // initialize output layer weights $_{3:}$ for *iter* = 1 ... *MaxIter* do $\mathbf{G} \leftarrow D \times K$ matrix of zeros // initialize input layer gradient $g \leftarrow K$ -vector of zeros // initialize output layer gradient 5: for all $(x,y) \in \mathbf{D}$ do 6: for $i = \tau$ to K do 7: $a_i \leftarrow w_i \cdot \hat{x}$ 8: $h_i \leftarrow tanh(a_i)$ // compute activation of hidden unit i9: end for 10: $\hat{y} \leftarrow \boldsymbol{v} \cdot \boldsymbol{h}$ // compute output unit 11: $e \leftarrow y - \hat{y}$ // compute error 12: $g \leftarrow g - eh$ // update gradient for output layer 13: for i = 1 to K do 14: $\mathbf{G}_i \leftarrow \mathbf{G}_i - ev_i(1 - \tanh^2(a_i))\mathbf{x}$ // update gradient for input layer 15: end for 16: end for 17: $\mathbf{W} \leftarrow \mathbf{W} - \eta \mathbf{G}$ // update input layer weights 18: $v \leftarrow v - \eta g$ // update output layer weights 19: 20: end for 21: return W, v

Backprop in a 2-layer network

What's our Training Objective?

We'll consider the following objective

$$\min_{\mathbf{W},v} \quad \sum_{n} \frac{1}{2} \left(y_n - \sum_{i} v_i f(\boldsymbol{w}_i \cdot \boldsymbol{x}_n) \right)^2$$

i.e. our goal is to find parameters $\boldsymbol{W},$ v that minimize squared error

Other objectives are possible (e.g., other loss functions, add regularizer)

Gradient of objective w.r.t. output layer weights v

Gradient of objective w.r.t. hidden unit weights w_i

$$\mathcal{L}(\mathbf{W}) = \frac{1}{2} \left(y - \sum_{i} v_{i} f(\boldsymbol{w}_{i} \cdot \boldsymbol{x}) \right)^{2}$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{w}_{i}} = \frac{\partial \mathcal{L}}{\partial f_{i}} \frac{\partial f_{i}}{\partial \boldsymbol{w}_{i}}$$
Chain rule
$$\frac{\partial \mathcal{L}}{\partial f_{i}} = -\left(y - \sum_{i} v_{i} f(\boldsymbol{w}_{i} \cdot \boldsymbol{x}) \right) v_{i} = -ev_{i}$$

$$\frac{\partial f_{i}}{\partial \boldsymbol{w}_{i}} = f'(\boldsymbol{w}_{i} \cdot \boldsymbol{x})\boldsymbol{x}$$

 $\nabla_{w_i} = -ev_i f'(w_i \cdot x) x$

)EAS (This is on one example only)

// // // // //

Backprop in a 2-layer network

ιν (D , η, Κ, MaxIter)
es // initialize input layer weights
// initialize output layer weights
// initialize input layer gradient
// initialize output layer gradient
// compute activation of hidden unit i
// compute output unit
// compute error
// update gradient for output layer
// update gradient for input layer
<pre>// update input layer weights</pre>
// update output layer weights

Forward

Update

Update

gradients

parameters

propagation

Tricky issues with neural network training

Sensitive to initialization

Objective is non-convex, many local optima In practice: start with random values rather than zeros

Many other hyperparameters

Number of hidden units (and potentially hidden layers) Gradient descent learning rate

Stopping criterion

Neural networks vs. linear classifiers

Advantages of Neural Networks: More expressive Less feature engineering

Inconvenients of Neural Networks:

Harder to train

Harder to interpret

Neural Network Architectures

We focused on a **2-layer feedforward** network

Other architectures are possible

- More than 2 layers (aka deep learning)
- Recurrent network (i.e. network has cycles)
- Can still be trained with backpropagation
 - But more issues arise when networks get more complex (e.g., vanishing gradients)

Try different architectures and training parameters here:

http://playground.tensorflow.org

What you should know

What are Neural Networks?

Multilayer perceptron

How to make a prediction given an input?

Forward propagation: Simple matrix operations + nolinearities

Why are neural networks powerful?

Universal function approximators!

How to train neural networks?

The backpropagation algorithm

Furong Huang 3251 A.V. Williams, College Park, MD 20740 301.405.8010 / furongh@cs.umd.edu