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Neural Networks

Last time

What are Neural Networks? (key components)

How to make a prediction given an input?

Why are neural networks powerful? 



Neural Networks

Last time
What are Neural Networks?

Multilayer perceptron
How to make a prediction given an input?

Simple matrix operations + nonlinearities
Why are neural networks powerful? 

Universal function approximators!

Today
how to train neural networks?



Example: a neural network to solve the 
XOR problem
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Example
●In new space, the examples are linearly separable!
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Example

●The final net
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Activation Functions

• Examples:

• Sign: s"#$(&) = )
−1, & < 0
0, & = 0
1, & > 0

• Tanh: tanh & = 456475
458475 =

4956:
4958:

• Derivative: ;<= tanh & = 1 − tanh>(&)



Activation Functions

• Sigmoid: ! " = $
$%&'( =

&(
$%&( , logistic function

• Derivative: ))* ! " = &(
$%&( = ! " (1 − ! " )



Activation Functions

• Relu: !"#$ % = %' = max(0, %) rectified 
linear unit
• A smooth approximation: softplus

/ % = log(1 + exp %)
• The derivative of softplus is logistic function /7 % = 89

:'89



Exercise

• Learn softmax function 
https://en.wikipedia.org/wiki/Softmax_fu
nction

https://en.wikipedia.org/wiki/Softmax_function


Forward Propagation:
given input x, compute network output



Neural Network Training

Backpropagation algorithm 
=

Gradient descent + Chain rule 



Recall: gradient descent
for linear classifiers

Objective function 
to minimize

Number of 
steps Step size



What’s our Training Objective?

We’ll consider the following objective

i.e. our goal is to find parameters W, v that minimize 
squared error

Other objectives are possible (e.g., other loss 
functions, add regularizer)



Backprop in a 2-layer network



Backprop in a 2-layer network

Compute Gradient G and g



What’s our Training Objective?

We’ll consider the following objective

i.e. our goal is to find parameters W, v that minimize 
squared error

Other objectives are possible (e.g., other loss 
functions, add regularizer)



Gradient of objective 
w.r.t. output layer weights v

Error at example n:
!" − $!"

Vector of activations 
of hidden units for 

example n



Gradient of objective
w.r.t. hidden unit weights !"

(This is on one example only)

Chain rule



Backprop in a 2-layer network

Forward 
propagation

Update 
gradients

Update 
parameters



Tricky issues with
neural network training
Sensitive to initialization

Objective is non-convex, many local optima
In practice: start with random values rather than 
zeros

Many other hyperparameters
Number of hidden units (and potentially hidden 
layers)
Gradient descent learning rate
Stopping criterion



Neural networks 
vs. linear classifiers

Advantages of Neural Networks:
More expressive
Less feature engineering

Inconvenients of Neural Networks:
Harder to train
Harder to interpret



Neural Network Architectures

We focused on a 2-layer feedforward
network

Other architectures are possible
More than 2 layers (aka deep learning)
Recurrent network (i.e. network has cycles)
Can still be trained with backpropagation

But more issues arise when networks get more complex 
(e.g., vanishing gradients)



Try different architectures and training 
parameters here:

http://playground.tensorflow.org



What you should know

What are Neural Networks?
Multilayer perceptron

How to make a prediction given an input?
Forward propagation: Simple matrix operations + nolinearities

Why are neural networks powerful? 
Universal function approximators!

How to train neural networks?
The backpropagation algorithm
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