
CMSC 422 Introduction to Machine Learning

Lecture 20 Deep Learning I

Furong Huang / furongh@cs.umd.edu

Slides adapted from Vlad Morariu



History of Neural Networks
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Standard computer vision pipeline

Features: HOG, SIFT, LBP, …

Classifiers: SVM, RF, KNN, …

Features are hand-crafted, not trained

eventually limited by feature quality
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Cat image credit: https://raw.githubusercontent.com/BVLC/caffe/master/examples/images/cat.jpg



Deep learning

Deep learning
multiple layer neural networks

learn features and classifiers directly (“end-to-end” 

training)
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Image credit: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to 

document recognition.” Proceedings of the IEEE, 1998.
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Speech Recognition
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Slide credit: Bohyung Han

SWITCHBOARD: telephone speech corpus for research and development



Image Classification Performance
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Image Classification Top-5 Errors (%)

Slide credit: Bohyung Han

Figure from: K. He, X. Zhang, S. Ren, J. Sun.  “Deep Residual Learning for Image  Recognition”. arXiv 2015. (slides)



Biological inspiration
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Image source: http://cs231n.github.io/neural-networks-1/



Artificial neuron

Activation function is usually non-linear

step, tanh, sigmoid

The actual biological system is much more complicated
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Image source: http://cs231n.github.io/neural-networks-1/



McCulloch-Pitts Model

• Threshold Logic Unit (TLU)
➢ Warren McCulloch and Walter Pitts, 1943

➢ Binary inputs/outputs and Threshold activation function

➢ Can represent AND/OR/NOT functions which can be composed for complex functions
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Read: https://en.wikipedia.org/wiki/Artificial_neuron



Rosenblatt’s Perceptron

• Perceptron
➢ Proposed by Frank Rosenblatt in 1957

➢ Based on McCulloch-Pitts model

➢ Real inputs/outputs, threshold activation function

1 0

Read: https://en.wikipedia.org/wiki/Perceptron



Perceptron Learning

• Given a training dataset of input features and 

labels

• Initialize weights  randomly                                     

• For each example in training set
➢ Classify example using current weights

➢ Update weights 

• If data is linearly separable, convergence is 

guaranteed in a bounded number of iterations
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https://en.wikipedia.org/wiki/Perceptron



Multiple output variables

Weights to predict multiple outputs can be learned 

independently
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Perceptron success

• Implemented as custom-built hardware, the “Mark I 
Perceptron”
• Input: photocells

• Weights: potentiometers

• Weight updates: electric motors

• Demonstrated ability to classify 20x20 images

• Generated lots of AI excitement

• In 1958, the New York Times reported the 
perceptron to be
• "the embryo of an electronic computer that [the Navy] expects 

will be able to walk, talk, see, write, reproduce itself and be 
conscious of its existence."

1 3

https://en.wikipedia.org/wiki/Perceptron



Linear Classifier
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Slide credit: Bohyung Han



Nonlinear Classifier
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Slide credit: Bohyung Han



Nonlinear Classifier – XOR problem

1 6



Perceptron limitations

• If there are multiple separating hyperplanes, 
learning will converge to one of them (not the 
optimal one)

• If training set is not linearly separable, training 
will fail completely

• Marvin Minsky and Seymour Papert, 
“Perceptrons”, 1969
• Proved that it was impossible to learn an XOR function 

with a single layer perceptron network

• Led to the “AI Winter” of the 1970’s
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https://en.wikipedia.org/wiki/Perceptron



Multi-Layer Perceptron (MLP)

• Activation function need not be a threshold

• Multiple layers can represent XOR function

• But perceptron algorithm cannot be used to 
update weights
• Why? Hidden layers are not observed!
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Image source: http://cs231n.github.io/neural-networks-1/

https://en.wikipedia.org/wiki/Multilayer_perceptron



Multi-Layer: Backpropagation
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Slide credit: Bohyung Han



Stochastic Gradient Descent (SGD)

Update weights for each sample

Minibatch SGD: Update weights for a small set of 
samples

2 0

𝐸 =
1

2
𝑦𝑛 − ො𝑦𝑛 2 𝒘𝑖 𝑡 + 1 = 𝒘𝑖 𝑡 − 𝜖

𝜕𝐸𝑛

𝜕𝒘𝑖

𝐸 =
1

2


𝑛∈𝐵

𝑦𝑛 − ො𝑦𝑛 2 𝒘𝑖 𝑡 + 1 = 𝒘𝑖 𝑡 − 𝜖
𝜕𝐸𝐵

𝜕𝒘𝑖

+ Fast, online
− Sensitive to noise

+ Fast, online
+ Robust to noise

Slide credit: Bohyung Han



Momentum

Remember the previous direction
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+ Converge faster
+ Avoid oscillation

Slide credit: Bohyung Han



Weight Decay

Penalize the size of the weights
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+ Improve generalization a lot!

Slide credit: Bohyung Han
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