
CMSC 422 Introduction to Machine Learning

Lecture 20 Deep Learning I

Furong Huang / furongh@cs.umd.edu

Slides adapted from Vlad Morariu

History of Neural Networks

2

Standard computer vision pipeline

Features: HOG, SIFT, LBP, …

Classifiers: SVM, RF, KNN, …

Features are hand-crafted, not trained

eventually limited by feature quality

3

fe
a
tu

re

e
x
tr

a
c
ti
o
n

features

c
la

s
s
if
ic

a
ti
o

n

“cat” or “background”

predicted labels

“cat”

supervision
training

Cat image credit: https://raw.githubusercontent.com/BVLC/caffe/master/examples/images/cat.jpg

Deep learning

Deep learning
multiple layer neural networks

learn features and classifiers directly (“end-to-end”

training)

4

Image credit: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to

document recognition.” Proceedings of the IEEE, 1998.

training

features classifier

supervision

Speech Recognition

5
Slide credit: Bohyung Han

SWITCHBOARD: telephone speech corpus for research and development

Image Classification Performance

6

Image Classification Top-5 Errors (%)

Slide credit: Bohyung Han

Figure from: K. He, X. Zhang, S. Ren, J. Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015. (slides)

Biological inspiration

7

Image source: http://cs231n.github.io/neural-networks-1/

Artificial neuron

Activation function is usually non-linear

step, tanh, sigmoid

The actual biological system is much more complicated

8

Image source: http://cs231n.github.io/neural-networks-1/

McCulloch-Pitts Model

• Threshold Logic Unit (TLU)
➢ Warren McCulloch and Walter Pitts, 1943

➢ Binary inputs/outputs and Threshold activation function

➢ Can represent AND/OR/NOT functions which can be composed for complex functions

9

Read: https://en.wikipedia.org/wiki/Artificial_neuron

Rosenblatt’s Perceptron

• Perceptron
➢ Proposed by Frank Rosenblatt in 1957

➢ Based on McCulloch-Pitts model

➢ Real inputs/outputs, threshold activation function

1 0

Read: https://en.wikipedia.org/wiki/Perceptron

Perceptron Learning

• Given a training dataset of input features and

labels

• Initialize weights randomly

• For each example in training set
➢ Classify example using current weights

➢ Update weights

• If data is linearly separable, convergence is

guaranteed in a bounded number of iterations

1 1

https://en.wikipedia.org/wiki/Perceptron

Multiple output variables

Weights to predict multiple outputs can be learned

independently

1 2

x3

x2

x1

x4

y1

y3

y2

w11

w12

w13
w14

w21
w22

w23

w24

w31
w32

w33

w34

inputs outputs

b1

b2

b3

Perceptron success

• Implemented as custom-built hardware, the “Mark I
Perceptron”
• Input: photocells

• Weights: potentiometers

• Weight updates: electric motors

• Demonstrated ability to classify 20x20 images

• Generated lots of AI excitement

• In 1958, the New York Times reported the
perceptron to be
• "the embryo of an electronic computer that [the Navy] expects

will be able to walk, talk, see, write, reproduce itself and be
conscious of its existence."

1 3

https://en.wikipedia.org/wiki/Perceptron

Linear Classifier

1 4

Slide credit: Bohyung Han

Nonlinear Classifier

1 5

Slide credit: Bohyung Han

Nonlinear Classifier – XOR problem

1 6

Perceptron limitations

• If there are multiple separating hyperplanes,
learning will converge to one of them (not the
optimal one)

• If training set is not linearly separable, training
will fail completely

• Marvin Minsky and Seymour Papert,
“Perceptrons”, 1969
• Proved that it was impossible to learn an XOR function

with a single layer perceptron network

• Led to the “AI Winter” of the 1970’s

1 7

https://en.wikipedia.org/wiki/Perceptron

Multi-Layer Perceptron (MLP)

• Activation function need not be a threshold

• Multiple layers can represent XOR function

• But perceptron algorithm cannot be used to
update weights
• Why? Hidden layers are not observed!

1 8

Image source: http://cs231n.github.io/neural-networks-1/

https://en.wikipedia.org/wiki/Multilayer_perceptron

Multi-Layer: Backpropagation

1 9

Neuron 𝑗Neuron 𝑖

𝑥𝑘 𝚺
Sigmoid

𝑤𝑘𝑖 𝑧𝑖
𝓛

𝑦

𝐸ො𝑦𝑖 𝚺
Sigmoid

𝑧𝑗
ො𝑦𝑗

𝑤𝑖𝑗

𝜕𝐸

𝜕 ො𝑦𝑖
=෍

𝑗

𝜕𝐸

𝜕𝑧𝑗

𝑑𝑧𝑗

𝑑 ො𝑦𝑖
= ෍

𝑗

𝑤𝑖𝑗

𝜕𝐸

𝜕𝑧𝑗

𝜕𝐸

𝜕𝑤𝑘𝑖
= ෍

𝑛

𝜕𝐸

𝜕 ො𝑦𝑖
𝑛

𝑑 ො𝑦𝑖
𝑛

𝑑𝑧𝑖
𝑛

𝜕𝑧𝑖
𝑛

𝜕𝑤𝑘𝑖

𝜕𝐸

𝜕𝑧𝑗
=
𝜕𝐸

𝜕 ො𝑦𝑗

𝑑 ො𝑦𝑗

𝑑𝑧𝑗

=෍

𝑛

𝑑 ො𝑦𝑖
𝑛

𝑑𝑧𝑖
𝑛

𝜕𝑧𝑖
𝑛

𝜕𝑤𝑘𝑖
෍

𝑗

𝑤𝑖𝑗

𝜕𝐸

𝜕 ො𝑦𝑗
𝑛

𝑑 ො𝑦𝑗
𝑛

𝑑𝑧𝑗
𝑛

= ෍

𝑗

𝑤𝑖𝑗

𝜕𝐸

𝜕 ො𝑦𝑗

𝑑 ො𝑦𝑗

𝑑𝑧𝑗

Slide credit: Bohyung Han

Stochastic Gradient Descent (SGD)

Update weights for each sample

Minibatch SGD: Update weights for a small set of
samples

2 0

𝐸 =
1

2
𝑦𝑛 − ො𝑦𝑛 2 𝒘𝑖 𝑡 + 1 = 𝒘𝑖 𝑡 − 𝜖

𝜕𝐸𝑛

𝜕𝒘𝑖

𝐸 =
1

2
෍

𝑛∈𝐵

𝑦𝑛 − ො𝑦𝑛 2 𝒘𝑖 𝑡 + 1 = 𝒘𝑖 𝑡 − 𝜖
𝜕𝐸𝐵

𝜕𝒘𝑖

+ Fast, online
− Sensitive to noise

+ Fast, online
+ Robust to noise

Slide credit: Bohyung Han

Momentum

Remember the previous direction

2 1

𝑣𝑖 𝑡 = 𝛼𝑣𝑖 𝑡 − 1 − 𝜖
𝜕𝐸

𝜕𝑤𝑖
(𝑡)

𝒘 𝑡 + 1 = 𝒘 𝑡 + 𝒗(𝑡)

+ Converge faster
+ Avoid oscillation

Slide credit: Bohyung Han

Weight Decay

Penalize the size of the weights

2 2

𝑤𝑖 𝑡 + 1 = 𝑤𝑖 𝑡 − 𝜖
𝜕𝐶

𝜕𝑤𝑖
= 𝑤𝑖 𝑡 − 𝜖

𝜕𝐸

𝜕𝑤𝑖
− 𝜆𝑤𝑖

𝐶 = 𝐸 +
1

2
෍

𝑖

𝑤𝑖
2

+ Improve generalization a lot!

Slide credit: Bohyung Han

Furong Huang

3251 A.V. Williams, College Park, MD 20740

301.405.8010 / furongh@cs.umd.edu

