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Logistic Regression

Goal: model the probability of a random
variable Y being O or 1 given experimental
data.

Consider a generalized linear model
function parameterized by 6,

ho(x) = 14+e0"x

Attempt to model the probability that y is O
or 1 with function
Pr(y|x; 8) = hg(x)¥(1 — hg(x))*™¥
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Logistic Regression

The likelihood assuming all the samples are

Independent
L(0]x)

— Pr(le; 9) — l_[ Pr(yilxl-; H) = 1_[ hH (xi)yi(l — h@ (xi))l—J’i
Maximum likelihood

maxL(91) = max | | ha () (1 = ho())' ™
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Neural Network with Softmax Classifier

Softmax Classifier: multinomial Logistic
Regression, the number of classes
more than 2.

Score: Instead of linear function as the
exponent, we use a nonlinear function
(e.g., a neural network s = f(x;; W))
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Softmax Classifier (Multinomial
Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

cat 3.2
car 51
frog -1.7

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS
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Softmax Classifier (Multinomial
Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

s = f(zi; W)
cat 3.2
car 51
frog -1.7

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS

@/ UNIVERSITY OF



Softmax Classifier (Multinomial
Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.
P(Y = k| X = @) = Zejia’f where }8 = f((l)z, W)I

cat 3.2
car 5.1
frog -1.7

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS
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Softmax Classifier (Multinomial
Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.
PlY =kX=u;) = — where | 8§ = f(m?_, W)‘

Ej e
cat 3.2 Softmax function
car 5.1
frog -1.7

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS
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Softmax Classifier (Multinomial
Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

& scores = unnormalized log probabilities of the classes.

PY = kX =3;)= Ze;;j where S — f(il?z, W)‘

Want to maximize the log likelihood, or (for a loss function)
cat 3 2 to minimize the negative log likelihood of the correct class:

L; = —-log P(Y = 4| X = z;
car 5.1 | og P( Yil Zi)

frog -1.7

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS
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Softmax Classifier (Multinomial
Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

P(Y = kX =2) = < wnere [s = f(mi; W)

Want to maximize the log likelihood, or (for a loss function)
cat 3 2 to minimize the negative log likelihood of the correct class:

g =—lopg P{Y =25l X =23
car 5.1 | og P(Y = yi| X = zi)

frog -1 7 in summary: Lz = log( ij;sj )

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS
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Softmax Classifier (Multinomial
Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

.Lz-—-—log(gits)
cat 3.2
car 5.1
frog -1.7

unnormalized log probabilities

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS
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Softmax Classifier (Multinomial
Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

8

L; = —log( et

unnormalized probabilities

cat 3.2 24.5
car 5.1 i 164.0
frog -1.7 0.18

unnormalized log probabilities

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS
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Softmax Classifier (Multinomial
Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

L; = —log( Ziy;s’ )
unnormalized probabilities
cat 3.2 24.5 0.13
exp normalize
car 51 — |[164.0—— | 0.87
frog -1.7 018 000
unnormalized log probabilities probabilities

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS
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Softmax Classifier (Multinomial
Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

unnormalized probabilities

cat 3.2 24.5 -1 0.13 |- Li=-109(0.13)
car | 54 2% 1640 07|
frog -1.7 0.18 0.00

unnormalized log probabilities probabilities

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS
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Softmax Classifier (Multinomial
Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

Q: What is the min/max

f: A L, = — log( 5;} ) |possible loss L_i?
unnormalized probabilities
cat 3.2 24.5 0.13 |- L_i=-log(0.13)
exp normalize =0.89
car 51 —— [164.0 - | 0.87
frog -1.7 0.18 0.00
unnormalized log probabilities probabilities

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS
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Softmax Classifier (Multinomial
Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

3.2
5.1
-1.7

exp

unnormalized probabilities

24.5
164.0
0.18

Q2: Usually at
initialization W is small

so all s = 0.
What is the loss?

normalize

-

unnormalized log probabilities

|

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
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0.13 | L_i=-log(0.13)
= 0.89

0.87

0.00

probabilities
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Softmax Classifier (Multinomial
Logistic Regression)

Recap

- We have some dataset of (x,y) -
- We have a score function: s = f(z; W) = Wz
- We have a loss function:

” Softmax
L- = — lO < .
1 g( E] 68] ) regularization loss
W_ score function S
—W) data loss
(3]
N lz; |
L=+ L+ RW) Fullloss %—
| Ji

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS
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Softmax Classifier (Multinomial
Logistic Regression)

Recap How do we find the best W?

- We have some dataset of (x,y) &,
- We have a score function: s = f(z; W) = Wz
- We have a loss function:

Softmax

Ls = —log(<2%)

8 -
E S
J reguiarization loss

score function |[——

R - f(:B,,W) data loss >L

L=+ SN, Li + R(W) Fullloss

Slide Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
FEARLESS IDEAS
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Multi-Layer: Backpropagation

y

Neuron i Neuron j

J0E OE dy;

aZj B 6)’7] dZ]

0E OF dzj 2 0E Z oE dy;

09 Lidydy £ Yiiaz T L.V dy; dz,

J
OE OE dpm dz! dpr dz! 2 0E dy}
— Ze —_— W : >y

aWkl' ~ ayln dZZl aWki ~ dZZl aWki > Y ay]n dZ}l

Slide credit: Bohyung Han
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Back Propagation Revisited

On board (gradient w.r.t elements):
Please take notes!

Vector format of the backpropagation
on slides
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Neural Network: Definition

Neural Network Consider a neural network defined as following:

loss = L(Y,Y)
Y = Woo(Wp_10(---o(W1i X +b117) o) + b 117) + 0,17
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Neural Network: Forward Pass

Forward pass The forward pass of the neural network can be done as the
following. We first initialize [;:

Di=X
Then we can iteratively calculate:

By = Wi_1Dp_q +bp_q17 .
{ Dy =0(Ey) =0(Wi_1Dp—q +bp_q1") Vhk=2,---.n (1)
Finally,
Y=W,D, +b,1"
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Neural Network: Back Prop |

Fact We will use the following results in deduction for backpropagation.

ﬂfé}f;x ) = ATV F(Y)ly—ax

Notations We use the following notation. .* means elementwise multiplica-
tion. do(X) for X € R**" is also a matrix in R®?. The elements on the i-th

row and j-th column do(X );; is defined as &%}Eﬂ:
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Neural Network: Back Prop Il

Backprop We start BP with following initialization:

-
) ::m GHD (2)
=G, 1
a}_‘; T
\ 30 =W, G,

We know that ;?L = W, ;;r G, so we can 1teratively calculate the following:

Gr = agL = do(Ej+1). * BSR = do(Wi Dy, + b 1" ). % (W,
L
au - Cka

Gr+1)

(3)

@ MARYLAND FEARLESS IDEAS
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Revival in the 1980’s

Backpropagation discovered in 1970’s but popularized
In 1986

» David E. Rumelhart, Geoffrey E. Hinton, Ronald J.
Williams. “Learning representations by back-
propagating errors.” In Nature, 1986.

MLP is a universal approximator

> Can approximate any non-linear function in theory,
given enough neurons, data

> Kurt Hornik, Maxwell Stinchcombe, Halbert White.
“Multilayer feedforward networks are universal
approximators.” Neural Networks, 1989

Generated lots of excitement and applications

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/
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Neural Networks Applied to Vision

LeNet — vision application

LeCun, Y; Boser, B; Denker, J; Henderson, D; Howard, R;
Hubbard, W; Jackel, L, “Backpropagation Applied to Handwritten
Zip Code Recognition,” in Neural Computation, 1989

USPS digit recognition, later check reading
Convolution, pooling (“weight sharing”), fully connected layers

C3.f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INPUT
B 6@28x28

S2: f. maps
6@14x14

‘ ‘ Full conr#ection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Image credit: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to
document recognition.” Proceedings of the IEEE, 1998.
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Unsupervised Neural Networks

Autoencoders output X’
: Encode then decode the same
input /
. No supervision needed hidden layer
input X

H. Bourlard and Y. Kamp. 1988. Auto-association by multilayer perceptrons and singular value decomposition.
Biol. Cybern. 59, 4-5 (September 1988), 291-294.

(Restricted) Boltzman
Machines (RBMs)

. Stochastic networks that can hidden layer
learn representations

- Restricted version: neurons _
must form bipartite graph Input X

Ackley, David H; Hinton Geoffrey E; Sejnowski, Terrence J, "A learning algorithm for Boltzmann machines", Cognitive
science, Elsevier, 1985.

Smolensky, Paul. "Chapter 6: Information Processing in Dynamical Systems: Foundations of Harmony Theory.” In
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations, 1986.

FEARLESS IDEAS 70
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Recurrent Neural Networks

Networks with loops

The output of a layer is used as input L
for the same (or lower) layer

Can model dynamics (e.g. in space or
time)

@—> @

Loops are unrolled

Now a standard feed-forward network () (h) (h)
with many layers T T T T
Suffers from vanishing gradient

problem A A A A
In theory, can learn long term memory,

In practice not (Bengio et al, 1994) (%)

Image credit: Chritopher Olah’s blog http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sepp Hochreiter (1991), Untersuchungen zu dynamischen neuronalen Netzen, Diploma thesis. Institut
f. Informatik, Technische Univ. Munich. Advisor: J. Schmidhuber.

Y. Bengio, P. Simard, P. Frasconi. Learning Long-Term Dependencies with Gradient Descent is
Difficult. In TNN 1994.
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Long Short Term Memory (LSTM)
& ®) 6

t | |

s N\ v B
——® ® > -

GEanh>
A (Mg A
o] [&] [

— > —>

\ J _J \_, 4

Image credit: Christopher Colah’s blog, http://colah.github.io/posts/2015-08-Understanding-
LSTMs/

A type of RNN explicitly designed not to have the vanishing or exploding
gradient problem

Models long-term dependencies

Memory is propagated and accessed by gates

Used for speech recognition, language modeling ...

Hochreiter, Sepp; and Schmidhuber, Jurgen. “Long Short-Term Memory.” Neural Computation, 1997.

& MARYLAND FEARLESS IDEAS 32



Issues in Deep Neural Networks

Large amount of training time
There are sometimes a lot of training data
Many iterations (epochs) are typically required for optimization
Computing gradients in each iteration takes too much time

Overfitting

Learned function fits training data well, but performs poorly on new data
(high capacity model, not enough training data)

Vanishing gradient problem

N\

z y
_ —
Sigmoid
0E 0F dyy 927 _ N ozl|agrc foy] ok
owy; - 0y dz]* dwy,; - Owyildz? j 7]

Gradients in the lower layers are typically extremely small
Optimizing multi-layer neural networks takes huge amount of time

Slide credit: adapted from Bohyung Han
FEARLESS IDEAS
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New “winter” and revival in early 2000’s

New “winter” in the early 2000’s due to
problems with training NNs

Support Vector Machines (SVMs), Random Forests
(RF) — easy to train, nice theory

Revival again by 2011-2012
- Name change (“neural networks” -> “deep learning”)
+ Algorithmic developments
» unsupervised layer-wise pre-training
RelLU, dropout, layer normalizatoin
+ Big data + GPU computing =

Large outperformance on many datasets (Vision:
ILSVRC’12)

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

FEARLESS IDEAS I
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Big Data

ImageNet Large Scale Visual Recognition Challenge
> 1000 categories w/ 1000 images per category

\\\ -4
dalmatian
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. 1JCV, 2015.
UNIVERSITY O
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AlexNet Architecture

; 3\ 3 » >
o1 s 3
h" 341 . L e
3 VT soa: \dense
_ : 192 192 128 2048 2048
27 128 s ] ]
N AN 13 13
224 i 3|} : ENEE 3| |7 . A
: ] - 13 A e ’ dense | |dense
27 3 3] ) BEEs 13
3 N 1000
192 192 128 Max || ||
Max 38 Max pooling 2048 2048
pooling pooling
3 a8
60 million parameters! Figure credit: Krizhevsky et al, NIPS 2012.

Various tricks

ReLU nonlinearity

Overlapping pooling

Local response normalization

Dropout — set hidden neuron output to 0O with probability .5
Data augmentation

Training on GPUs

Alex Krizhevsky, llya Sutskeyer, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.
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GPU Computing

Big data and big models require lots of
computational power

GPUSs

» thousands of cores for parallel operations
> multiple GPUs

> still took about 5-6 days to train AlexNet on two
NVIDIA GTX 580 3GB GPUs (much faster
today)

@/ UNIVERSITY OF

FEARLESS IDEAS 7



Image Classification Performance

28.2

‘ 152 layers ‘

A
\
\
‘ 22 layers H 19 Iayers ‘
\ 6.7
357 I_____I ‘ 8Iayers H 8 layers

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Image Classification Top-5 Errors (%)
Figure from: K. He, X. Zhang, S. Ren, J. Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015. (slides)

Slide credit: Bohyung Han
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Questions?

References (& great tutorials):
http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-1/
http://cs231n.qgithub.io/neural-networks-1/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

@ MARYLAND FEARLESS IDEAS
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http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-1/
http://cs231n.github.io/neural-networks-1/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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