CMSC 422 Introduction to Machine Learning
Lecture 22 Kernel Methods

Furong Huang / furongh@cs.umd.edu
Beyond linear classification

Problem: linear classifiers
- Easy to implement and easy to optimize
- But limited to linear decision boundaries

What can we do about it?
- Last week: Neural networks
 - Very expressive but harder to optimize (non-convex objective)
- Today: Kernels
Kernel Methods

Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

How?

By mapping data to higher dimensions where it exhibits linear patterns
Classifying non-linearly separable data with a linear classifier: examples

Non-linearly separable data in 1D

Becomes linearly separable in new 2D space defined by the following mapping:

\[x \rightarrow \{x, x^2\} \]
Classifying non-linearly separable data with a linear classifier: examples

Non-linearly separable data in 2D

Becomes linearly separable in the 3D space defined by the following transformation:

$$\mathbf{x} = \{x_1, x_2\} \rightarrow \mathbf{z} = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\}$$
Defining feature mappings

Map an original feature vector \(x = \langle x_1, x_2, x_3, \ldots, x_D \rangle \) to an expanded version \(\phi(x) \).

Example: quadratic feature mapping represents feature combinations

\[
\phi(x) = \langle 1, 2x_1, 2x_2, 2x_3, \ldots, 2x_D, \\
x_1^2, x_1x_2, x_1x_3, \ldots, x_1x_D, \\
x_2x_1, x_2^2, x_2x_3, \ldots, x_2x_D, \\
x_3x_1, x_3x_2, x_3^2, \ldots, x_2x_D, \\
\ldots, \\
x_Dx_1, x_Dx_2, x_Dx_3, \ldots, x_D^2 \rangle
\]
Feature Mappings

Pros: can help turn non-linear classification problem into linear problem

Cons: “feature explosion” creates issues when training linear classifier in new feature space
 More computationally expensive to train
 More training examples needed to avoid overfitting
Kernel Methods

Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

How?

By mapping data to higher dimensions where it exhibits linear patterns

By rewriting linear models so that the mapping never needs to be explicitly computed
The Kernel Trick

Rewrite learning algorithms so they only depend on dot products between two examples

Replace dot product $\phi(x)^\top \phi(z)$
by kernel function $k(x, z)$
which computes the dot product implicitly
Example of Kernel function

Consider two examples $x = \{x_1, x_2\}$ and $z = \{z_1, z_2\}$

Let’s assume we are given a function k (kernel) that takes as inputs x and z

\[
k(x, z) = (x^T z)^2
= (x_1 z_1 + x_2 z_2)^2
= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2
= (x_1^2, \sqrt{2}x_1 x_2, x_2^2)^T (z_1^2, \sqrt{2}z_1 z_2, z_2^2)
= \phi(x)^T \phi(z)
\]

The above k implicitly defines a mapping ϕ to a higher dimensional space

\[
\phi(x) = \{x_1^2, \sqrt{2}x_1 x_2, x_2^2\}
\]
Another example of Kernel Function (from CIML)

\[\phi(x) = \langle 1, 2x_1, 2x_2, 2x_3, \ldots, 2x_D, \]
\[x_1^2, x_1x_2, x_1x_3, \ldots, x_1x_D, \]
\[x_2x_1, x_2^2, x_2x_3, \ldots, x_2x_D, \]
\[x_3x_1, x_3x_2, x_3^2, \ldots, x_2x_D, \]
\[\ldots, \]
\[x_Dx_1, x_Dx_2, x_Dx_3, \ldots, x_D^2 \rangle \]

What is the function \(k(x,z) \) that can implicitly compute the dot product \(\phi(x) \cdot \phi(z) \)?

\[
\phi(x) \cdot \phi(z) = 1 + x_1z_1 + x_2z_2 + \cdots + x_Dz_D + x_1^2z_1^2 + \cdots + x_1x_Dz_1z_D + \]
\[
\cdots + x_Dx_1z_Dz_1 + x_Dx_2z_Dz_2 + \cdots + x_D^2z_D^2 \quad (9.2) \\
= 1 + 2 \sum_d x_dz_d + \sum_d \sum_e x_dx_ez_dz_e \quad (9.3) \\
= 1 + 2x \cdot z + (x \cdot z)^2 \quad (9.4) \\
= (1 + x \cdot z)^2 \quad (9.5)
\]
Kernels: Formally defined

Recall: Each kernel k has an associated feature mapping ϕ

ϕ takes input $x \in \mathcal{X}$ (input space) and maps it to \mathcal{F} (“feature space”)

Kernel $k(x, z)$ takes two inputs and gives their similarity in \mathcal{F} space

$$
\phi : \mathcal{X} \rightarrow \mathcal{F} \\
k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, \quad k(x, z) = \phi(x)^\top \phi(z)
$$

\mathcal{F} needs to be a vector space with a dot product defined on it

Also called a *Hilbert Space*
Kernels: Mercer’s condition

Can *any* function be used as a kernel function? No! it must satisfy Mercer’s condition.

For k to be a kernel function

- There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
- The above is true if K is a positive definite function

$$\int dx \int dz f(x) k(x, z) f(z) > 0$$

For all square integrable functions f
Kernels: Constructing combinations of kernels

Let k_1, k_2 be two kernel functions then the following are as well:

- $k(x, z) = k_1(x, z) + k_2(x, z)$: direct sum
- $k(x, z) = \alpha k_1(x, z)$: scalar product
- $k(x, z) = k_1(x, z)k_2(x, z)$: direct product
Commonly Used Kernel Functions

Linear (trivial) Kernel:
\[k(x, z) = x^\top z \] (mapping function \(\phi \) is identity - no mapping)

Quadratic Kernel:
\[k(x, z) = (x^\top z)^2 \quad \text{or} \quad (1 + x^\top z)^2 \]

Polynomial Kernel (of degree \(d \)):
\[k(x, z) = (x^\top z)^d \quad \text{or} \quad (1 + x^\top z)^d \]

Radial Basis Function (RBF) Kernel:
\[k(x, z) = \exp[-\gamma \|x - z\|^2] \]
Fun Fact about RBF kernel

- The feature space of the kernel has an infinite number of dimensions; for $\sigma = 1$, its expansion is:

\[
\exp\left(-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right) = \sum_{j=0}^{\infty} \frac{\left(\mathbf{x}^\top \mathbf{x}'\right)^j}{j!} \exp\left(-\frac{1}{2}\|\mathbf{x}\|^2\right) \exp\left(-\frac{1}{2}\|\mathbf{x}'\|^2\right)
\]

\[
= \sum_{j=0}^{\infty} \sum_{\sum n_i = j} \exp\left(-\frac{1}{2}\|\mathbf{x}\|^2\right) \frac{x_1^{n_1} \cdots x_k^{n_k}}{\sqrt{n_1! \cdots n_k!}} \exp\left(-\frac{1}{2}\|\mathbf{x}'\|^2\right) \frac{x_1'^{n_1} \cdots x_k'^{n_k}}{\sqrt{n_1! \cdots n_k!}}
\]

- Since the value of the RBF kernel decreases with distance and ranges between zero (in the limit) and one (when $x = x'$), it has a ready interpretation as a similarity measure.
The Kernel Trick

Rewrite learning algorithms so they only depend on dot products between two examples.

Replace dot product $\phi(x)^\top \phi(z)$ by kernel function $k(x, z)$ which computes the dot product implicitly.
"Kernelizing" the perceptron

Naïve approach: let’s explicitly train a perceptron in the new feature space

```
Algorithm 28 PerceptronTrain(D, MaxIter)
1: \( w \leftarrow 0, b \leftarrow 0 \) // initialize weights and bias
2: for iter = 1 \ldots MaxIter do
3:   for all \((x,y) \in D\) do
4:     \( a \leftarrow w \cdot \phi(x) + b \) // compute activation for this example
5:     if \( ya \leq 0 \) then
6:       \( w \leftarrow w + y \phi(x) \) // update weights
7:       \( b \leftarrow b + y \) // update bias
8:     end if
9:   end for
10: end for
11: return \( w, b \)
```

Can we apply the Kernel trick? Not yet, we need to rewrite the algorithm using dot products between examples
“Kernelizing” the perceptron

Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight vector \(w \) can always be represented as a linear combination of the expanded training data”

Proof by induction
(in CIML)
“Kernelizing” the perceptron

We can use the perceptron representer theorem to compute activations as a dot product between examples.

\[w \cdot \phi(x) + b = \left(\sum_n \alpha_n \phi(x_n) \right) \cdot \phi(x) + b \]

\[\begin{align*}
 &= \sum_n \alpha_n \left[\phi(x_n) \cdot \phi(x) \right] + b \\
 \text{definition of } w
\end{align*} \]

\[\begin{align*}
 &= \sum_n \alpha_n \left[\phi(x_n) \cdot \phi(x) \right] + b \\
 \text{dot products are linear}
\end{align*} \]
“Kernelizing” the perceptron

Algorithm 29 $\text{KernelizedPerceptronTrain}(D, \text{MaxIter})$

1. $\alpha \leftarrow 0$, $b \leftarrow 0$ // initialize coefficients and bias
2. for iter = 1 ... MaxIter do
3. for all $(x_n, y_n) \in D$ do
4. $a \leftarrow \sum_m \alpha_m \phi(x_m) \cdot \phi(x_n) + b$ // compute activation for this example
5. if $y_n a \leq 0$ then
6. $\alpha_n \leftarrow \alpha_n + y_n$ // update coefficients
7. $b \leftarrow b + y$ // update bias
8. end if
9. end for
10. end for
11. return α, b

- Same training algorithm, but doesn’t explicitly refers to weights w anymore only depends on dot products between examples
- We can apply the kernel trick! Replace the inner product of $\phi(x_m) \cdot \phi(x_n)$ with some kernel function
Kernel Methods

Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

How?

By mapping data to higher dimensions where it exhibits linear patterns

By rewriting linear models so that the mapping never needs to be explicitly computed
Other algorithms can be kernelized:

- See CIML for K-means
- We’ll talk about Support Vector Machines next

Do Kernels address all the downsides of “feature explosion”?

- Helps reduce computation cost during training
- But overfitting remains an issue
What you should know

Kernel functions
What they are, why they are useful, how they relate to feature combination

Kernelized perceptron
You should be able to derive it and implement it
Furong Huang
3251 A.V. Williams, College Park, MD 20740
301.405.8010 / furongh@cs.umd.edu