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Back to linear classification

Last time: we’ve seen that kernels can help
capture non-linear patterns in data while keeping
the advantages of a linear classifier

Today: Support Vector Machines
A hyperplane-based classification algorithm
Highly influential

Backed by solid theoretical grounding (Vapnik &
Cortes, 1995)

Easy to kernelize
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The Maximum Margin Principle

Find the hyperplane with maximum
separation margin on the training data
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Margin of a data set D

- Margin of a dataset D with respect to a hyperplane w'x + b

: yw'x+b) .
min if w separates D
margin(D,w, b) = (xy)€D 8
gin ) { —00 [l otherwise 5:8)
Distance between the min (y(w'x + b)) = 0
hyperplane (w,b) and
the nearest point in D
* Margin of a dataset D
margin(D) = sup margin(D, w, b) (3.9)

w,b

Largest attainable margin on D
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Support Vector Machine (SVM)

A hyperplane based linear classifier defined by w and b
Prediction rule: y = sign(w’x + b)
Given: Training data {(x1,v1),...,(Xn, yn)}

Goal: Learn w and b that achieve the maximum margin
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Characterizing the margin

Let's assume the entire training data is correctly classified
by (w,b) that achieve the maximum margin

Wx+b=1 @ Assume the hyperplane is such that
\?Jf)(siglxl.. .. // wx+b=-1 (e ] WTXn —|— b Z ]. for yn — +].
, = o wx,+b< —1fory,=-1

o Equivalently, y,-,(wa,, +b)>1

H BN . T
= Mini<,<n W X, + b| =1
H B B -
W clessa @ The hyperplane’'s margin:
[
_ : |WTxn‘|’b‘_ 1
VT MIM<n<N W = Tlw]
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The Optimization Problem

Maximizing the margin v = minimizing ||w|| (the norm)

Our optimization problem would be:

2
Minimize f(w,b) = |v;||

subject to  y,(w'x,+b)>1, yn=1,...
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Large Margin = Good Generalization

Intuitively, large margins mean good generalization
Large margin => small ||w||
small ||w]| => regularized/simple solutions

(Learning theory gives a more formal justification)
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Solving the SVM Optimization Problem

Our optimization problem is:

2
Minimize f(w, b) = ”“;”
subject to 1 §yn(wa,,+b), vn=1,...,N
Introducing Lagrange Multipliers a, (n ={1,..., N}), one for each

constraint, leads to the Lagrangian:

5 N
Minimize L(w,b,«a) = [w] + Zan{l — yn(w'x, + b)}
2 n=1
subjectto ap, >0;Vn=1,....N
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Lagrange Dual Function

An optimization problem in standard form:
minimize fo(x)
subjectto f;(x) <0, i=12,..,m
hi(x)=0, i=1.2,..,p
Variables: x € R"™. Assume nonempty feasible set
Optimal value: p*. Optimizer: x*.
ldea: augment objective with a weighted sum of constraints
Lagrangian: L(x, 2, 1) = fo(x) + X124 4ifi(x) + X2 pihy ()
Lagrange multipliers (dual variables): A > 0, u
Lagrange dual function: g(A, u) = inf, L(x, A, u)
Lower bound on Optimal Value: g(4, 1) < p*, VA= 0,u
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Lagrange Dual Problem

Lower bound from Lagrange dual function depends
on (4, u). What is the best lower bound that can be
obtalned from Lagrange dual function?

maxmize g (A, u)
subjecttod = 0

This is the Lagrange dual problem with dual
variables (4, u).

Dual objective function is always a concave
function since it's the infimum of a family of affine
functions in (4, u). Therefore: convex optimization
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Solving the SVM Optimization Problem

Our optimization problem is:

2
Minimize f(w, b) = ”“;”
subject to 1 §yn(wa,,+b), vn=1,...,N
Introducing Lagrange Multipliers a, (n ={1,..., N}), one for each

constraint, leads to the Lagrangian:

5 N
Minimize L(w,b,«a) = [w] + Zan{l — yn(w'x, + b)}
2 n=1
subjectto ap, >0;Vn=1,....N
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Solving the SVM Optimization Problem

Take (partial) derivatives of Lp w.r.t. w, b and set them to zero

()L

n=1 n=1

JdL
0\: =0=w= Znnynxn

Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

Maximize Lp(w, b, a) = Zan— — Z AmOnYmYn(X!x,)

mnl

subject to Z anyn=0, a,=20;, n=1,...,N
n=1

http /lcs229.stanford.edu/notes/cs229-notes3. pdf
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Solving the SVM Optimization Problem

nes of Lp w.r.t. w, b and set them to zero

A Quadratic Program for
which many off-the-shelf Z nYnXn,
solvers exist |

JLp

= —0:>Zanyn—0

n=1

Substituting thet the Primal Lagrangian Lp gives the Dual Lagrangian

Maximize Lp(w, b, a) = Zan— — Z AmOnYmYn(X!x,)

mnl

subject to Z anyn=0, a,=20;, n=1,...,N
n=1
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SVM: the solution!

Once we have the «,'s, w and b can be computed as:

N
W = Zn=1 QpYnXp

1 T T
b=—3 (mm,,:yn:H W' X, + MaxX,.,, ——1W x,,)

Note: Most «,’s in the solution are zero (sparse solution)
@ Reason: Karush-Kuhn-Tucker (KKT) conditions

@ For the optimal «a,'s

on{l — yo(w'x, + b)} =0

@ «, is non-zero only if x, lies on one of the two LI
margin boundaries, i.e., for which y,-,(wan +b)=1

wx+be<=-1

@ These examples are called support vectors

@ Support vectors “support” the margin boundaries
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What if the data is not separable?

Non-separable case: We will allow misclassified training examples

@ .. but we want their number to be minimized
= by minimizing the sum of slack variables (Zle £n)

The optimization problem for the non-separable case

9 N
Minimize f(w.b) ||“;|| -C Yy &,
n=1
subject to yn{wan +b)>1-&,. £,>0 n=1,...,
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Support Vector Machines

Find the max margin linear classifier for a dataset

Discovers “support vectors”, the training examples
that “support” the margin boundaries

Hard margin vs soft margin SVM

Hard margin: assme the data is linearly separable
(today’s lecture)

Soft margin: more general case (next time!)
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Recall KKT conditions

Remember duality

Given a minimization problem

min f(z)
subject to hi(z) <0, i=1,...m
li(x) =0, j=1,...r

we defined the Lagrangian:
L(z,u,v) = f(z) + Y _whi(z) + Y _v;t;()
i=1 j=1

and Lagrange dual function:

g(u,v) = min L(z,u,v)
z€R™

Slides credit to Geoff Gordon & Ryan Tibshirani
FEARLESS IDEAS
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Recall KKT conditions

The subsequent dual problem is:
max U, v
u€eR™, veR™ g( )
subject to u > 0

Important properties:

e Dual problem is always convex, i.e., g is always concave (even
if primal problem is not convex)

e The primal and dual optimal values, f* and g*, always satisfy
weak duality: f* > g*
e Slater's condition: for convex primal, if there is an z such that

hi(z) <0,...hp(x) <0 and #i(z)=0,...4.(x) =0

then strong duality holds: f* = g*. (Can be further refined
to strict inequalities over nonaffine h;, 1 = 1,...m)

Slides credit to Geoff Gordon & Ryan Tibshirani
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Recall KKT conditions

Duality gap
Given primal feasible = and dual feasible u, v, the quantity
f(z) — g(u,v)
is called the duality gap between x and u,v. Note that
f(@) = f* < f(z) — g(u,v)

so if the duality gap is zero, then x is primal optimal (and similarly,
u,v are dual optimal)

From an algorithmic viewpoint, provides a stopping criterion: if
f(z) — g(u,v) <€, then we are guaranteed that f(z) — f* <e

Very useful, especially in conjunction with iterative methods ...
more dual uses in coming lectures

Slides credit to Geoff Gordon & Ryan Tibshirani
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Recall KKT conditions

Karush-Kuhn-Tucker conditions

Given general problem

min f(z)

subject to hi(z) <0, i=1,...m
li(z)=0, j=1,...r

The Karush-Kuhn-Tucker conditions or KKT conditions are:

e 0€0f(z) + Z u;Ohi(x) + Z v;0¢;(x) (stationarity)
i=1 j=1

e u; - hi(z) =0 for all ¢ (complementary slackness)

e hi(z) <0, 4j(z) =0 forall 3,5 (primal feasibility)

o u; >0 forall ¢ (dual feasibility)

Slides credit to Geoff Gordon & Ryan Tibshirani
FEARLESS IDEAS
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Recall KKT conditions

Necessity

Let z* and u*,v* be primal and dual solutions with zero duality
gap (strong duality holds, e.g., under Slater’s condition). Then

f(@*) = g(u*,v")

= min f(z)+ Zu:hz(:c) - Z v ;(x)
i—1 =1

TeR"”

< f@®)+ Y uthi(@®) + Y viti(a*)
i=1 j=1
< f(z¥)

In other words, all these inequalities are actually equalities

Slides credit to Geoff Gordon & Ryan Tibshirani
FEARLESS IDEAS
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Recall KKT conditions

Two things to learn from this:

e The point z* minimizes L(z,u*,v*) over x € R™. Hence the
subdifferential of L(z,u*,v*) must contain 0 at z = z*—this
is exactly the stationarity condition

e We must have > 7", uh;(z*) = 0, and since each term here
is <0, this implies w}h;(z*) = 0 for every i—this is exactly

complementary slackness

Primal and dual feasibility obviously hold. Hence, we've shown:

If z* and u*,v* are primal and dual solutions, with zero duality
gap, then z*, u*, v* satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity
of our problem, i.e. of f,h;,¥;)

Slides credit to Geoff Gordon & Ryan Tibshirani
FEARLESS IDEAS
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Recall KKT conditions

Sufficiency

If there exists z*, u*,v* that satisfy the KKT conditions, then
g(u*,v*) = f(&*) + ) urhi(@*) + ) vit;(c¥)
i=1 j=1
= f(z")

where the first equality holds from stationarity, and the second
holds from complementary slackness

Therefore duality gap is zero (and z* and u*,v* are primal and
dual feasible) so z* and w*,v* are primal and dual optimal. l.e.,
we've shown:

If z* and u*,v* satisfy the KKT conditions, then z* and u*, v*
are primal and dual solutions

Slides credit to Geoff Gordon & Ryan Tibshirani
® MARYLAND FEARLESS IDEAS



Recall KKT conditions

Putting it together

In summary, KKT conditions:
e always sufficient

® necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater's condi-
tion: convex problem and there exists x strictly satisfying non-
affine inequality contraints),

z* and u*,v* are primal and dual solutions

< z* and u*, v* satisfy the KKT conditions

(Warning, concerning the stationarity condition: for a differentiable
function f, we cannot use df(z) = {Vf(x)} unless f is convex)

Slides credit to Geoff Gordon & Ryan Tibshirani
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