Slides adapted from Prof Carpuat and Duraiswami

Furong Huang / furongh@cs.umd.edu

UNIVERSITY OF MARYLAND

Back to linear classification

Last time: we've seen that kernels can help capture non-linear patterns in data while keeping the advantages of a linear classifier

Today: Support Vector Machines

- A hyperplane-based classification algorithm
- Highly influential
- Backed by solid theoretical grounding (Vapnik & Cortes, 1995)

Easy to kernelize

The Maximum Margin Principle

Find the hyperplane with maximum separation margin on the training data

Margin of a data set D

• Margin of a dataset D with respect to a hyperplane $w^{T}x + b$

$$margin(\mathbf{D}, w, b) = \begin{cases} \min_{(x,y)\in\mathbf{D}} \frac{y(w^{\mathsf{T}}x+b)}{||w||} & \text{if } w \text{ separates } \mathbf{D} \\ \text{otherwise} \end{cases} (3.8)$$

Distance between the hyperplane (w,b) and the nearest point in D

(3.9)

• Margin of a dataset D $margin(\mathbf{D}) = \sup_{w,b} margin(\mathbf{D}, w, b)$ Largest attainable margin on D UNIVERSITY OF MARYLAND FEARLESS IDEAS

Support Vector Machine (SVM)

A hyperplane based linear classifier defined by **w** and *b* Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$ **Given:** Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$ **Goal:** Learn **w** and *b* that achieve the maximum margin

Characterizing the margin

Let's assume the entire training data is correctly classified by (**w**,b) that achieve the maximum margin

Assume the hyperplane is such that

- $\mathbf{w}^T \mathbf{x}_n + b \geq 1$ for $y_n = +1$
- $\mathbf{w}^T \mathbf{x}_n + b \leq -1$ for $y_n = -1$
- Equivalently, $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$ $\Rightarrow \min_{1 \le n \le N} |\mathbf{w}^T \mathbf{x}_n + b| = 1$
- The hyperplane's margin:

$$\gamma = \min_{1 \le n \le N} \frac{|\mathbf{w}^T \mathbf{x}_n + b|}{||\mathbf{w}||} = \frac{1}{||\mathbf{w}||}$$

The Optimization Problem

We want to maximize the margin $\gamma = \frac{1}{||\mathbf{w}||}$

Maximizing the margin $\gamma = \text{minimizing} ||\mathbf{w}||$ (the norm) Our optimization problem would be:

Large Margin = Good Generalization

Intuitively, large margins mean good generalization Large margin => small ||w|| small ||w|| => regularized/simple solutions

(Learning theory gives a more formal justification)

Our optimization problem is:

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $1 \le y_n(\mathbf{w}^T \mathbf{x}_n + b), \quad \forall n = 1, ..., N$

Introducing Lagrange Multipliers α_n ($n = \{1, ..., N\}$), one for each constraint, leads to the Lagrangian:

$$\begin{array}{ll} \text{Minimize} & L(\mathbf{w}, b, \alpha) = \frac{||\mathbf{w}||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b)\} \\ \text{subject to} & \alpha_n \geq 0; \forall n = 1, \dots, N \end{array}$$

Lagrange Dual Function

An optimization problem in standard form:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, 2, \dots, m \\ & h_i(x) = 0, \quad i = 1, 2, \dots, p \end{array}$$

Variables: $x \in \mathbb{R}^n$. Assume nonempty feasible set Optimal value: p^* . Optimizer: x^* .

Idea: augment objective with a weighted sum of constraints

- Lagrangian: $L(x, \lambda, \mu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x)$
- Lagrange multipliers (dual variables): $\lambda \ge 0, \mu$
- Lagrange dual function: $g(\lambda, \mu) = \inf_x L(x, \lambda, \mu)$
- Lower bound on Optimal Value: $g(\lambda, \mu) \le p^*, \forall \lambda \ge 0, \mu$

Lagrange Dual Problem

• Lower bound from Lagrange dual function depends on (λ, μ) . What is the best lower bound that can be obtained from Lagrange dual function?

maxmize $g(\lambda, \mu)$

subject to $\lambda \ge 0$

This is the Lagrange dual problem with dual variables (λ, μ) .

• Dual objective function is always a concave function since it's the infimum of a family of affine functions in (λ, μ) . Therefore: convex optimization

Our optimization problem is:

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $1 \le y_n(\mathbf{w}^T \mathbf{x}_n + b), \quad \forall n = 1, ..., N$

Introducing Lagrange Multipliers α_n ($n = \{1, ..., N\}$), one for each constraint, leads to the Lagrangian:

$$\begin{array}{ll} \text{Minimize} & L(\mathbf{w}, b, \alpha) = \frac{||\mathbf{w}||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b)\} \\ \text{subject to} & \alpha_n \geq 0; \forall n = 1, \dots, N \end{array}$$

Take (partial) derivatives of L_P w.r.t. w, b and set them to zero

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n, \quad \frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^N \alpha_n y_n = 0$$

Substituting these in the Primal Lagrangian L_P gives the Dual Lagrangian

Maximize
$$L_D(\mathbf{w}, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n(\mathbf{x}_m^T \mathbf{x}_n)$$

subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$, $\alpha_n \ge 0$; $n = 1, \dots, N$
http://cs229.stanford.edu/notes/cs229-notes3.pdf

🦇 TATTITITI I TATA AT

Take (partial) derivatives of
$$L_P$$
 w.r.t. **w**, *b* and set them to zero
A Quadratic Program for
which many off-the-shelf
solvers exist
$$= \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n, \quad \frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0$$
Substituting thes
the Primal Lagrangian L_P gives the Dual Lagrangian
Maximize $L_D(\mathbf{w}, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n(\mathbf{x}_m^T \mathbf{x}_n)$
subject to $\sum_{n=1}^{N} \alpha_n y_n = 0, \quad \alpha_n \ge 0; \quad n = 1, \dots, N$

SVM: the solution!

Once we have the α_n 's, w and b can be computed as:

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$

$$b = -\frac{1}{2} \left(\min_{n: y_n = +1} \mathbf{w}^T \mathbf{x}_n + \max_{n: y_n = -1} \mathbf{w}^T \mathbf{x}_n \right)$$

FEARLESS IDEAS

Note: Most α_n 's in the solution are zero (sparse solution)

- Reason: Karush-Kuhn-Tucker (KKT) conditions
- For the optimal α_n 's

$$\alpha_n\{1-y_n(\mathbf{w}'\mathbf{x}_n+b)\}=0$$

- α_n is non-zero only if \mathbf{x}_n lies on one of the two margin boundaries, i.e., for which $y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$
- These examples are called support vectors
- Support vectors "support" the margin boundaries

What if the data is not separable?

Non-separable case: We will allow misclassified training examples

- .. but we want their number to be minimized
 - \Rightarrow by minimizing the sum of slack variables $(\sum_{n=1}^{N} \xi_n)$

The optimization problem for the non-separable case

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n$$

subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1 - \xi_n, \quad \xi_n \ge 0 \qquad n = 1, \dots, N$

Support Vector Machines

Find the max margin linear classifier for a dataset

Discovers "support vectors", the training examples that "support" the margin boundaries

Hard margin vs soft margin SVM

Hard margin: assme the data is linearly separable (today's lecture)

Soft margin: more general case (next time!)

Remember duality

Given a minimization problem

$$egin{aligned} \min_{x\in\mathbb{R}^n} & f(x) \ ext{subject to} & h_i(x)\leq 0, \ i=1,\ldots m \ & \ell_j(x)=0, \ j=1,\ldots r \end{aligned}$$

we defined the Lagrangian:

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

and Lagrange dual function:

$$g(u,v) = \min_{x \in \mathbb{R}^n} L(x,u,v)$$

Slides credit to Geoff Gordon & Ryan Tibshirani

The subsequent dual problem is:

 $\max_{u \in \mathbb{R}^m, v \in \mathbb{R}^r} g(u, v)$ subject to $u \ge 0$

Important properties:

- Dual problem is always convex, i.e., g is always concave (even if primal problem is not convex)
- The primal and dual optimal values, f^\star and $g^\star,$ always satisfy weak duality: $f^\star \geq g^\star$
- Slater's condition: for convex primal, if there is an x such that

 $h_1(x) < 0, \ldots h_m(x) < 0$ and $\ell_1(x) = 0, \ldots \ell_r(x) = 0$

then strong duality holds: $f^* = g^*$. (Can be further refined to strict inequalities over nonaffine h_i , i = 1, ..., m)

Slides credit to Geoff Gordon & Ryan Tibshirani

Duality gap

Given primal feasible x and dual feasible u, v, the quantity

f(x) - g(u, v)

is called the **duality gap** between x and u, v. Note that

 $f(x) - f^{\star} \le f(x) - g(u, v)$

so if the duality gap is zero, then x is primal optimal (and similarly, u, v are dual optimal)

From an algorithmic viewpoint, provides a stopping criterion: if $f(x) - g(u, v) \le \epsilon$, then we are guaranteed that $f(x) - f^* \le \epsilon$

Very useful, especially in conjunction with iterative methods ... more dual uses in coming lectures

Slides credit to Geoff Gordon & Ryan Tibshirani

Karush-Kuhn-Tucker conditions

Given general problem

 $egin{aligned} \min_{x\in\mathbb{R}^n} & f(x) \ ext{subject to} & h_i(x)\leq 0, \ i=1,\ldots m \ & \ell_j(x)=0, \ j=1,\ldots r \end{aligned}$

The Karush-Kuhn-Tucker conditions or KKT conditions are:

•
$$0 \in \partial f(x) + \sum_{i=1}^{m} u_i \partial h_i(x) + \sum_{j=1}^{r} v_j \partial \ell_j(x)$$
 (stationarity)

- $u_i \cdot h_i(x) = 0$ for all i (complementary slackness)
- $h_i(x) \leq 0, \ \ell_j(x) = 0$ for all i, j
- $u_i \geq 0$ for all i

(primal feasibility)

(dual feasibility)

Slides credit to Geoff Gordon & Ryan Tibshirani

Necessity

Let x^* and u^*, v^* be primal and dual solutions with zero duality gap (strong duality holds, e.g., under Slater's condition). Then

$$\begin{split} f(x^{\star}) &= g(u^{\star}, v^{\star}) \\ &= \min_{x \in \mathbb{R}^n} f(x) + \sum_{i=1}^m u_i^{\star} h_i(x) + \sum_{j=1}^r v_j^{\star} \ell_j(x) \\ &\leq f(x^{\star}) + \sum_{i=1}^m u_i^{\star} h_i(x^{\star}) + \sum_{j=1}^r v_j^{\star} \ell_j(x^{\star}) \\ &\leq f(x^{\star}) \end{split}$$

In other words, all these inequalities are actually equalities

Slides credit to Geoff Gordon & Ryan Tibshirani

Two things to learn from this:

- The point x^{*} minimizes L(x, u^{*}, v^{*}) over x ∈ ℝⁿ. Hence the subdifferential of L(x, u^{*}, v^{*}) must contain 0 at x = x^{*}—this is exactly the stationarity condition
- We must have ∑_{i=1}^m u_i^{*}h_i(x^{*}) = 0, and since each term here is ≤ 0, this implies u_i^{*}h_i(x^{*}) = 0 for every *i*—this is exactly complementary slackness

Primal and dual feasibility obviously hold. Hence, we've shown:

If x^* and u^*, v^* are primal and dual solutions, with zero duality gap, then x^*, u^*, v^* satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity of our problem, i.e. of f, h_i, ℓ_j)

Slides credit to Geoff Gordon & Ryan Tibshirani

Sufficiency

If there exists $x^{\star}, u^{\star}, v^{\star}$ that satisfy the KKT conditions, then

$$egin{aligned} g(u^\star,v^\star) &= f(x^\star) + \sum_{i=1}^m u_i^\star h_i(x^\star) + \sum_{j=1}^r v_j^\star \ell_j(x^\star) \ &= f(x^\star) \end{aligned}$$

where the first equality holds from stationarity, and the second holds from complementary slackness

Therefore duality gap is zero (and x^* and u^* , v^* are primal and dual feasible) so x^* and u^* , v^* are primal and dual optimal. I.e., we've shown:

If x^\star and u^\star,v^\star satisfy the KKT conditions, then x^\star and u^\star,v^\star are primal and dual solutions

Slides credit to Geoff Gordon & Ryan Tibshirani

Putting it together

In summary, KKT conditions:

- always sufficient
- necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater's condition: convex problem and there exists x strictly satisfying nonaffine inequality contraints),

 x^{\star} and u^{\star},v^{\star} are primal and dual solutions

 $\Leftrightarrow \quad x^{\star} \text{ and } u^{\star}, v^{\star} \text{ satisfy the KKT conditions}$

(Warning, concerning the stationarity condition: for a differentiable function f, we cannot use $\partial f(x) = \{\nabla f(x)\}$ unless f is convex)

Slides credit to Geoff Gordon & Ryan Tibshirani

Furong Huang 3251 A.V. Williams, College Park, MD 20740 301.405.8010 / furongh@cs.umd.edu