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Back to linear classification

Last time: we’ve seen that kernels can help 
capture non-linear patterns in data while keeping 
the advantages of a linear classifier

Today: Support Vector Machines
A hyperplane-based classification algorithm 
Highly influential
Backed by solid theoretical grounding (Vapnik & 
Cortes, 1995)
Easy to kernelize



The Maximum Margin Principle

Find the hyperplane with maximum 
separation margin on the training data 
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• Margin of a dataset D



Support Vector Machine (SVM)



Characterizing the margin

Let’s assume the entire training data is correctly classified 
by (w,b) that achieve the maximum margin



The Optimization Problem

∀



Large Margin = Good Generalization

Intuitively, large margins mean good generalization
Large margin => small ||w||
small ||w|| => regularized/simple solutions

(Learning theory gives a more formal justification)



Solving the SVM Optimization Problem
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Lagrange Dual Function

An optimization problem in standard form:
minimize &'())
subject to &2 ) ≤ 0, 6 = 1,2, … ,;

ℎ2 ) = 0, 6 = 1,2, … , =
Variables: ) ∈ ℝ@. Assume nonempty feasible set
Optimal value: =∗. Optimizer: )∗.
Idea: augment objective with a weighted sum of constraints
• Lagrangian: B ), C, D = &' ) + ∑2GH

I C2&2 ) + ∑2GH
J D2ℎ2())

• Lagrange multipliers (dual variables): C ≥ 0, D
• Lagrange dual function: L C, D = infN B(), C, D)
• Lower bound on Optimal Value: L C, D ≤ =∗, ∀C ≥ 0, D



Lagrange Dual Problem

• Lower bound from Lagrange dual function depends 
on (", $). What is the best lower bound that can be 
obtained from Lagrange dual function?

maxmize ,(", $)
subject to " ≥ 0

This is the Lagrange dual problem with dual 
variables (", $). 

• Dual objective function is always a concave 
function since it’s the infimum of a family of affine 
functions in (", $). Therefore: convex optimization



Solving the SVM Optimization Problem
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Solving the SVM Optimization Problem

http://cs229.stanford.edu/notes/cs229-notes3.pdf



Solving the SVM Optimization Problem

A Quadratic Program for 
which many off-the-shelf 

solvers exist



SVM: the solution!



What if the data is not separable?



Support Vector Machines

Find the max margin linear classifier for a dataset

Discovers “support vectors”, the training examples 
that “support” the margin boundaries

Hard margin vs soft margin SVM
Hard margin: assme the data is linearly separable 
(today’s lecture)
Soft margin: more general case (next time!)



Recall KKT conditions
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