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What we know about SVM so far

REVIEW



The Maximum Margin Principle

Find the hyperplane with maximum
separation margin on the training data
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Support Vector Machine (SVM)

A hyperplane based linear classifier defined by w and b
Prediction rule: y = sign(w’x + b)
Given: Training data {(x1,y1),.-., (Xn, yn)}

Goal: Learn w and b that achieve the maximum margin
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Characterizing the margin

Let’s assume the entire training data is correctly classified by (w,b) that achieve
the maximum margin

o bt @ Assume the hyperplane is such that
ﬁ&siin: .. ! wx+b=-1 [* )] WTxn + b Z 1 for n — —|—1
o 4 Y
[ @ 7
.:. , m o w'x,+b< —1fory,=-1
o a " o Equivalently, y,(w’x, + b) > 1
/ ‘7 m u :
o ' m = mini<,<y W' x, + b| =1
/ ; H B B
/ o W odassa o The hyperplane’s margin:
| [ ]
wx+b=0 // | . . |WTXn+b|_ 1
7= MMV W= Tlw]
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Solving the SVM Optimization Problem (assuming
linearly separable data)

Our optimization problem is:

2
Minimize f(w,b) = HV;H
subject to 1 < y,(w'x, + b), n=1....,N
Introducing Lagrange Multipliers a, (n = {1,..., N}), one for each
constraint, leads to the Lagrangian:
w5
Minimize L(w,b,«a) = + Zan{l — ya(w'x, + b)}
2 n=1
subjectto a, >0; n=1,....N
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Solving the SVM Optimization Problem (assuming
linearly separable data)

Take (partial) derivatives of Lp w.r.t. w, b and set them to zero

dl_p B de B
W =W = Zan WXn, b 0:>Zanyn—0

Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

Maximize Lp(w,b,a) = Zan—— Z A mOnYmYn(X %)

m.n=1

subject to Z anyn=0, a,>0; n=1....N
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Solving the SVM Optimization Problem (assuming
linearly separable data)

hes of Lp w.r.t. w, b and set them to zero

A Quadratic Program for
which many off-the-shelf Z O nVnXn,
solvers exist |

dlp

b —O:>Zanyn—0

Substituting the the Primal Lagrangian Lp gives the Dual Lagrangian

Maximize Lp(w,b,a) = Zan—— Z A mOnYmYn(X %)

m.n=1

subject to Z anyn=0, a,>0; n=1....N
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SVM: the solution!
(assuming linearly separable data)

Once we have the a,'s, w and b can be computed as:

N
W = En=1 AnYnXn

1 (o T T
b=—2%(minpy,—+1 W' X, + MaXyy,——1W'X,)

Note: Most «,'s in the solution are zero (sparse solution)

@ Reason: Karush-Kuhn-Tucker (KKT) conditions
o For the optimal a,’s
an{l = yo(w'x, + b)} =0

@ «p is non-zero only if x, lies on one of the two
margin boundaries, i.e., for which y,,(wa,, +b)=1

@ These examples are called support vectors

@ Support vectors “support” the margin boundaries
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What if the data is not separable?

GENERAL CASE SVM SOLUTION



SVM in the non-separable case

no hyperplane can separate the classes perfectly

We still want to find the max margin hyperplane, but
We will allow some training examples to be misclassified
We will allow some training examples to fall within the margin region
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SVM in the non-separable case

) , slack
"

Recall: For the separable case (training loss = 0), the constraints were:

y,,(wan +b)>1 Vn
For the non-separable case, we relax the above constraints as:

yn(WTxn + b) 2 ]-_fn ‘v’n

&, is called slack variable (distance x,, goes past the margin boundary)
&, > 0,Vn, misclassification when &, > 1
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SVM Optimization Problem

Non-separable case: We will allow misclassified training examples

@ .. but we want their number to be minimized
= by minimizing the sum of slack variables (Y-~ &,)

The optimization problem for the non-separable case

N
[[wll* |

Minimize f(w.b) = >

C hyperparameter dictates which term dominates the
minimization

« Small C => prefer large margins and allows more
misclassified examples

« Large C => prefer small number of misclassified examples,
but at the expense of a small margin
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Introducing Lagrange Multipliers...

Our optimization problem is:

Minimize f(w,b,§) =

subject to 1 < yp(w'x, + b)+§,,, 0<¢&, n=1,...,N

Introducing Lagrange Multipliers v, 8, (n = {1,..., N}), for the constraints,
leads to the Primal Lagrangian:

[lwl[?

Minimize Lp(w, b, ¢, o, 3) = >

CZ£n+Zan{1_yn(W x,,—i—b) 5} Zﬁnfn

subject to a,,3,>0; n=1,..., N

Terms in red are those that were
not there in the separable case!
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Formulating the dual objective

Take (partial) derivatives of Lp w.r.t. w, b, £, and set them to zero

oL N oL N oL
—8;:0:>W:n§:;04n}/nxna 8_[::0:>n2:204n}/n:07 8_;:0:>C_an_/3n:0

Using C —a,—B,=0and 5, > 0=, < C
Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

N N
. 1
Maximize Lp(w,b,&, a, 3) = nz:;a,, ~3 mz’;l amoz,,ymyn(x;x,,)
N
subject to Zanyn:O, 0<a,<C; n=1,....N
n=1

Note
* Given «a the solution for w, b has the same form as in the

separable case
@ is again sparse, nonzero a,,’s correspond to support

vectors




Support Vectors
in the Non-Separable Case

We now have 3 types of support vectors!

(1) Lying on the margin boundaries w’x + b= —1 and w'x+ b = +1 (& =0)
(2) Lying within the margin region (0 < &, < 1) but still on the correct side
(3) Lying on the wrong side of the hyperplane (&, > 1)
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Notes on training

Solving the quadratic problem is O(N”3)

Can be prohibitive for large datasets

But many options to speed up training
Approximate solvers

Learn from what we know about training linear
models
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Recall: Learning a Linear Classifier
as an Optimization Problem

Loss function
Objective measures how well
function classifier fits training
data

~

Regularizer
prefers solutions
that generalize
well

- —

min L(w, b) = mip Z}I(yn(wan + b) < 0) + AR(w, b)

I(.)

Indicator function: 1 if (.) is true, 0 otherwise
The loss function above is called the 0-1 loss

n=1

@/ UNIVERSITY OF

FEARLESS IDEAS



Recall: Learning a Linear Classifier
as an Optimization Problem

. . . T
min L(w,b) = min ;H(yn(w X, + b) < 0) + AR(w, b)

* Problem: The 0-1 loss above is NP-hard to optimize
exactly/approximately in general
 Solution: Different loss function approximations and

regularizers lead to specific algorithms
(e.g., perceptron, support vector machines, etc.)
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Recall: Approximating the 0-1 loss with
surrogate loss functions

Examples (with b = |
0) [1— y.w'x,]s = max{0,1 — y,w'x,}
Hinge loss |0g[1 + exp(_anTxn)]

Log loss exp(—y,,wan)
Exponential loss

Lw)’
All are convex
upper-bounds on

the 0-1 loss
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What is the SVM loss function?

No penalty (¢, = 0) if ya(w'x, + b) > 1
Linear penalty (¢, =1 — yao(w'x, + b)) if ya(w'x, +b) < 1
It's precisely the hinge loss max{0,1 — y,(w'x, + b)}

@/ UNIVERSITY OF

FEARLESS IDEAS



Recall: What is the perceptron
optimizing?

Algorithm 5 PERCEPTRONTRAIN(D, MaxlIter)

v Wy <o, forall d=1...D // initialize weights
= b+o0 // initialize bias
5 foriter = 1 ... MaxlIter do

4 for all (x,y) € D do

5 a<— ZdDZI wy x5+ Db /I compute activation for this example
6 if ya < o then

7 wy — wy +yxg, forall d=1...D // update weights
8 b<—b+y // update bias
9 end if

o end for

« end for

= return wy, wy, ..., wp, b

Loss function is a variant of the hinge loss
& DA max{0, —y,(w'x, + b)}



SVM + KERNELS



Kernelized SVM training

Recall the SVM dual Lagrangian:

N N
1
Maximize Lp(w, b, &, a, B) = E o, — 5 E amoz,,ymyn(x,:x,,)
n=1

m,n=1

N
subject to Zany,,zo, 0<ap<C n=1,...,N

n=1

Replacing xx, by ¢(xm)" &(xn) = k(Xm, Xn) = Kmn, where k(.,.) is some
suitable kernel function

N N
1
Maximize Lp(w, b, &, a, B) = Z an— Z AmnYmYnKmn
n=1

m,n=1
N
subject to Zany,,:Q 0<a,<C;, n=1,...,N

n=1

SVM now learns a linear separator in the kernel defined feature space F
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Kernelized SVM prediction

Prediction for a test example x (assume b = 0)
y = sign(w ' x) = sign( Z UnYnXn | X)
neSVv

SV is the set of support vectors (i.e., examples for which «,, > 0)
Replacing each example with its feature mapped representation (x — ¢(x))

y = sign( Y anynp(xa) P(x)) = sign( Y anynk(xn,x))

neSVv neSv

The weight vector for the kernelized case can be expressed as:

Note
w = nVn Xn) = Qp ,,kx,,,. 0
E:O‘ Yn@(Xn) Z yak(xn, ) « Kernelized SVM needs
the support vectors at

nesSv nesSvVv

test time!
* While unkernelized SVM
can just store w
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Example: decision boundary of an SVM
with an RBF Kernel
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What you should know

What are Support Vector Machines
How to train SVMs
Which optimization problem we need to solve

Geometric interpretation

- What are support vectors and what is their relationship with parameters
w,b?

How do SVM relate to the general formulation of linear classifiers
Why/how can SVMs be kernelized
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