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Abstract

The problem of geometric alignment of two roughly pre-
registered, partially overlapping, rigid, noisy 3D point sets
is considered. A new natural and simple, robustified ex-
tension of the popular Iterative Closest Point (ICP) algo-
rithm [1] is presented, called the Trimmed ICP (TrICP). The
new algorithm is based on the consistent use of the Least
Trimmed Squares (LTS) approach in all phases of the op-
eration. Convergence is proved and an efficient implemen-
tation is discussed. TrICP is fast, applicable to overlaps
under50%, robust to erroneous measurements and shape
defects, and has easy-to-set parameters. ICP is a special
case of TrICP when the overlap parameter is100%. Re-
sults of testing the new algorithm are shown.

1. Introduction

This paper1 addresses the problem of Euclidean align-
ment of two roughly pre-registered, partially overlapping
3D point sets in presence of measurement outliers and, pos-
sibly, shape defects. This problem has been mainly con-
sidered in 3D model acquisition (reverse engineering, scene
reconstruction) and motion analysis, including model-based
tracking. (See [14] for an overview of recent applications.)
Given two 3D point sets,P andM, the task is to find the
Euclidean motion that bringsP into the best possible align-
ment withM.

The Iterative Closest Point (ICP) algorithm proposed by
Besl and McKay [1] is a standard solution to the alignment
problem. This iterative algorithm has three basic steps:
1. pair each point ofP to the closest point inM; 2. compute
the motion that minimises the mean square error (MSE) be-
tween the paired points; 3. apply the motion toP and update
the MSE. The three steps are iterated; the iterations have
been proved to converge in terms of the MSE.

Independently, Chen and Medioni [2] published a similar

1To appear in Proc.ICPR’02, Québec City, 2002

iterative scheme using a different pairing procedure based
on surface normal vector. This formulation is only applica-
ble to points on surfaces. In this paper, we prefer the formu-
lation by Besl and McKay which is applicable to volumetric
as well as surface measurements.

The idea of ICP proved very fruitful as it was followed by
numerous applications, improvements and modifications.
A comprehensive survey oriented towards range images is
provided in the PhD thesis by Pulli [10]. Rusinkiewicz and
Levoy [13] give a fresh update of the variants of the ICP
algorithm. They classify the variants according to the way
the algorithms: (1) select subsets ofP andM; (2) match
(pair) points; (3) weight the pairs; (4) reject some pairs;
(5) assign error metric; (6) minimise the error metric.

Selection usually refers to random sampling of points
when using a Monte Carlo technique, such as the Least Me-
dian of Squares (LMedS) [11, 14]. Pairs can be weighed or
rejected based on the distribution of distances [16] or some
geometric constraints [8]. Different cost functions and min-
imisation procedures are applied. For example, a recent pa-
per by Fitzgibbon [6] presents an attempt of direct, rather
than iterative, minimisation of the cost function (MSE) us-
ing the nonlinear Levenberg-Marquardt algorithm.

Most of the above modifications of ICP seek to improve
robustness, convergence (speed) and precision. The most
critical issue is probably that of robustness, as the original
algorithm assumes outlier-free data andP being a subset
of M, in the sense that each point ofP has a valid cor-
respondence inM. Numerous attempts have been made
to robustify ICP by rejecting wrong pairs. In particular,
robust statistics have been applied, such as LMedS or the
Least Trimmed Squares (LTS) [12, 10]. Pajdla and Van
Gool [8] proposed the Iterative Closest Reciprocal Point
(ICRP) algorithm that exploits theε-reciprocal correspon-
dence: given a pointp ∈ P and the closest pointm ∈ M,
m is back-projected ontoP by finding the closest point
p′ ∈ P. If ‖p− p′‖ > ε, the pair(p,m) is rejected.

Often, different heuristics are combined, making the re-
sulting ICP-variant efficient in cases when the underlying
— sometimes, implicit — assumptions are met. Such het-



erogeneous combinations are difficult to analyse; in partic-
ular, convergence properties remain unclear.

Computational efficiency is another important issue,
since some applications require fast real-time operation for
medium-size datasets, such as range images [10]. Various
data structures, like k-D tree [7] or spatial bins [16], are used
to facilitate search of the closest point. To speed up the con-
vergence, normal vectors are considered, which is mainly
helpful in the beginning of the iteration process [10].

In this paper, we concentrate on the issue of robustness.
A new robustified extension of ICP is presented, called the
Trimmed ICP (TrICP). The new algorithm is based on the
consistent use of the Least Trimmed Squares (LTS) ap-
proach in all phases of the operation. LTS [12] means sort-
ing the square errors and minimising a certain number of
smaller values; LMedS [11] minimises the median, that is,
the value in the middle of the sorted sequence.

Previously, LTS has only been used in the context of ran-
domised, Monte-Carlo type initial estimation of the align-
ment parameters [10], following the guidelines of the classi-
cal approach [11] to robust regression and outlier detection.
In this approach, model parameters are repeatedly estimated
as random samples are drawn whose size is sufficient for the
estimation. After the initial estimation, outliers are detected
and rejected, and the final least squares solution is obtained
for inliers only.

LTS is preferred to LMedS because it has better conver-
gence rate and a smoother objective function [12]. How-
ever, as robust statistics in the context of a randomised ap-
proach, LTS and LMedS have the same breakdown point of
50%. This means that the overlap between the two point
sets has to exceed50%.

Our basic observation is that LTS fits the original scheme
of ICP without any significant modification. At each step of
iteration, the optimal motion can be computed for trimmed
squares in exactly the same way as it is done in ICP for
all squares. (The median of squares does not facilitate this
computation, rendering the LMedS variant [14] inapplica-
ble to large point sets.) At the same time, trimming the
squares makes the algorithm robust in the original deter-
ministic framework, without randomisation. The resulting
algorithm, the Trimmed ICP, is applicable to overlaps under
50%. As no additional heuristics are used, the convergence
of the algorithm is easy to prove.

The paper is organised as follows. Section 2 formulates
the problem and presents the new algorithm. In section 3,
convergence is proved and some implementation details are
discussed. Results of tests are shown in section 4.

2. The new algorithm

Following the notation of [14], consider two sets of 3D
points to align: thedata setP = {pi}

Np
1 and themodel

setM = {mi}Nm1 . Usually, the numbers of points in the
two sets are different:Np 6= Nm. A large portion of the
data points may have no correspondence in the model set.
Assume the minimum guaranteed rate of the data points that
can be paired is known; we will call this rate theminimum
overlapand denote it byξ. Then, the number of the data
points that can be paired isNpo = ξNp.

If the value ofξ is unknown, one can run TrICP several
times and select a result that combines a good MSE with the
highest possible overlap. A procedure for automatic setting
of ξ is given in section 3.

Like most iterative algorithms, including ICP, our al-
gorithm assumes thatP andM have beenroughly pre-
registered, either manually or automatically. This can be
done, for example, by aligning a few characteristic points
or, in a controlled measurement setup, by calculating the
sensor motion between the two views. It should be em-
phasised, however, that the initial alignment can be fairly
rough: TrICP has been successfully applied to the initial
relative rotations of up to30◦.

Also, it is assumed that the overlapping part of the
two sets is characteristic enough to allow for unambiguous
matching. In particular, this part should not be symmetric
and ‘featureless’. This assumption is typical for most point
set registration algorithms. A possible way to cope with this
problem is discussed in section 3.

Under these assumptions, the problem is to find the Eu-
clidean transformation that brings anNpo-point subset ofP
into the best possible alignment withM. For an Euclidean
motion with rotation matrixR and translation vectort, de-
note the transformed points of the data set by

pi(R, t) = Rpi + t, P(R, t) = {pi(R, t)}Np1 (1)

Define theindividual distancefrom a data pointpi(R, t) to
the model setM as the distance to the closest point ofM:

mcl(i,R, t) = arg min
m∈M

‖m− pi(R, t)‖ (2)

di(R, t) = ‖mcl(i,R, t)− pi(R, t)‖ (3)

We wish to find the motion(R, t) that minimises the sum
of the leastNpo squared individual distancesd2

i (R, t).
The conventional ICP algorithm assumes that all data

points can be paired:ξ = 1 andNpo = Np. TrICP pro-
vides a smooth transition to ICP asξ → 1.

The structure of TrICP is similar to that of ICP. The
basic idea of is to consistently use the least trimmed squares
(LTS) in all major aspects of operation: to cope with out-
liers, shape defects, or just partial overlap; to estimate the
optimal transformation at each iteration step; and to form
the global cost function which is minimised. The main
steps of TrICP are as follows. These steps are iterated until
any of the stopping conditions described below is satisfied.
The iterations are started withSLTS = huge number.



Algorithm 1: Trimmed Iterative Closest Point

1. For each point ofP, find the closest point inM and
compute the individual distancesd2

i (eq.(3)).

2. Sortd2
i in ascending order, select theNpo least values

and calculate their sumS′LTS .

3. If any of the stopping conditions is satisfied, exit; oth-
erwise, setSLTS = S′LTS and continue.

4. Compute for theNpo selected pairs the optimal motion
(R, t) that minimisesS′LTS .

5. TransformP according to(R, t) (eq.(1)) and go to 1.

We use the standard stopping conditions [14] related to the
number of iterationsNiter and the MSE for theNpo selected
pairs: (1) the maximum allowedNiter has been reached, or
(2) thetrimmed MSEe = S′LTS/Npo is sufficiently small,
or (3) the relative change of the trimmed MSE|e − e′|/e
is sufficiently small. Note that in [14] absolute rather than
relative change is tested.

3. Implementation and convergence

Like any variant of the ICP, a fastimplementationof
the TrICP needs an efficient data structure supporting the
closest point search. In step 1, we use a simple boxing
structure [3] that partitions the space into uniform boxes,
cubes. Given a point in space, only the box containing this
point and the adjacent boxes are to be considered during the
search. The box size is updated as the two sets get closer.

The heap sort [9] is used to efficiently sort the distances
in step 2. The optimal motion in step 4 is computed by the
unit quaternion method due to Horn [5]. The same method
was used in the original version of the ICP [1].

When the value of the overlap parameterξ is unknown,
we set it automatically by minimising the objective func-
tion ψ(ξ) = e(ξ)ξ−(1+λ), whereλ ≥ 0 is a preset param-
eter. (In the tests described in section 4, we usedλ = 2.)
ψ(ξ) minimises the trimmed MSEe(ξ) while trying to use
as many points as possible. Increasingλ, one can attempt
to avoid undesirable alignments of symmetric and/or ‘fea-
tureless’ parts of the two sets.

The minimum ofψ(ξ) is searched in the range[0.4, 1.0],
which is a typical range of overlaps. The objective func-
tion is quite smooth. Usually, 5–8 iterations are sufficient to
locate the minimum with the necessary precision.

Many previous attempts to robustify the ICP used some
additional geometric or statistical heuristics which were not
mathematically coherent with the original idea. The TrICP

incorporates the robust LTS statistics in a way compatible
with the philosophy and data structure of the ICP. An im-
portant advantage of this natural extension is that thecon-
vergenceof the TrICP can be proved. The following theo-
rem is valid, whose proof is given in [4].
Theorem: The Trimmed Iterative Closest Point algorithm
always converges monotonically to a local minimum with
respect to the trimmed MSE objective function.

Convergence to global minimum depends on the starting
point. To avoid local minima, the ICP is usually run several
times at different conditions. Varyingξ one can also run the
TrICP at different conditions and select the best result.

4. Tests and discussion

Figure 1 compares the ICP and the TrICP in aligning
two partially overlapping and differently rotated measure-
ments of the Frog. Each of the two sets has about 3000
points. Some numerical results are shown in table 1, in-
cluding number of iterations and the execution time on a 1.6
GHz PC. The TrICP alignment is better and faster. (Note:
As the ICP is a special case of the TrICP, the same program
is run with different values ofξ.)

setP setM

result of ICP result of TrICP

Figure 1. Aligning two measurements of Frog.

Table 1. Numerical results for Frog data
Method Niter MSE Exec.time
ICP (100%) 45 5.83 7 sec
TrICP 70% 88 0.10 2 sec

A systematic study is in progress, aimed to quantitatively
compare the TrICP to the ICP, the ICRP [8] and other meth-



ods for large sets of 2D and 3D shapes. Some results are
presented in tables 2 and 3. They were obtained for the
SQUID fish contour database available at the web site [15]
of the University of Surrey, UK. The database contains two-
dimensional shapes of 1100 different fishes.

To formP, the original shape is rotated by a known an-
gle. M preserves the original orientation. Then, differ-
ent non-overlapping parts ofM andP are deleted so as to
provide a desired overlap. Finally, noise is added to both
shapes.

The fully automatic version of TrICP is applied to align
M andP. This means that the known overlapξa is not
passed to the algorithm:ξ is set automatically using the pro-
cedure described in section 3. In most cases, the obtainedξ
and the actualξa are very close, which does not necessarily
mean thatξa is always optimal for alignment.

Tables 2 and 3 present mean absolute differences be-
tween the ground-truth rotation and the rotations obtained
by the TrICP and ICRP [8] for the 1100 shapes at various
rotations (degrees) and overlaps (per cents). To obtain the
best possible result, for each alignment the ICPR is run a
few times. Each time, the input is the output of the previous
run, and the parameters of theε-reciprocal correspondence
are modified accordingly. Note that iterations of the ICRP
may not converge, although in practice this rarely happens.

Table 2. TrICP errors for SQUID data, degrees

100% 90% 80% 70% 60%
1◦ 0.0512 0.0829 0.0701 0.0984 0.1879
5◦ 0.0509 0.0858 0.0797 0.1216 0.3411

10◦ 0.0517 0.0917 0.0984 0.1915 0.5800
15◦ 0.0509 0.1091 0.1646 0.3380 1.1430
20◦ 0.0502 0.0953 0.2025 0.6942 1.7949

Table 3. ICRP errors for SQUID data, degrees

100% 90% 80% 70% 60%
1◦ 0.0531 0.0612 0.0762 0.1226 0.2259
5◦ 0.0541 0.0652 0.1110 0.1763 0.3079

10◦ 0.0542 0.0655 0.1826 0.5988 1.7008
15◦ 0.0609 0.1108 0.3625 1.0878 2.5363
20◦ 0.1076 0.1614 0.4871 1.5114 3.0254

At the current state of the experimental study, we experi-
ence that the execution times of the two algorithms are com-
parable, which is not surprising. For the SQUID dataset, the
TrICP usually more accurate than the ICRP. At small rota-
tions, the difference is not significant. However, the TrICP
is more robust to rotation and incomplete, noisy data. Its

proved convergence is also an advantage. The results need
more thorough analysis. Additional tests are under way to
systematically assess the algorithms in 3D.
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