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Abstract—Since its introduction in the early 1990s, the Iterative Closest Point (ICP) algorithm has become one of the most well-known
methods for geometric alignment of 3D models. Given two roughly aligned shapes represented by two point sets, the algorithm
iteratively establishes point correspondences given the current alignment of the data and computes a rigid transformation accordingly.
From a statistical point of view, however, it implicitly assumes that the points are observed with isotropic Gaussian noise. In this paper,
we show that this assumption may lead to errors and generalize the ICP such that it can account for anisotropic and inhomogenous
localization errors. We 1) provide a formal description of the algorithm, 2) extend it to registration of partially overlapping surfaces,
3) prove its convergence, 4) derive the required covariance matrices for a set of selected applications, and 5) present means for
optimizing the runtime. An evaluation on publicly available surface meshes as well as on a set of meshes extracted from medical
imaging data shows a dramatic increase in accuracy compared to the original ICP, especially in the case of partial surface registration.
As point-based surface registration is a central component in various applications, the potential impact of the proposed method is high.

Index Terms—Registration, surface algorithms, ICP, point-based registration, anisotropic weighting.
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INTRODUCTION

EGISTERING 3D models is an important task in a variety of

fields, including biometrics [1], 3D model construction
from multiple range images [2], intra-interventional registra-
tion in computer-assisted medical applications [3], and
quality assurance in manufacturing [4]. While many different
methods have been proposed for finding a rough alignment
of the data [5], the Iterative Closest Point (ICP) algorithm [6]
is probably the most widely used method for fine geometric
alignment of 3D models. The general idea behind it was
introduced in the early 1990s almost simultaneously by
several authors [6], [7], but the variant proposed by Besl and
McKay [6] is the most frequently cited one. It is generically
applicable to any two objects represented by point clouds
and can be proven to converge to an at least local minimum
with respect to a mean-square distance metric. Given two
roughly aligned shapes represented by two point sets, the
algorithm iteratively 1) establishes point correspondences
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given the current alignment of the data, and 2) computes a
rigid transformation accordingly. From a statistical point of
view, however, it implicitly assumes that the points are
observed with zero mean, identical, and isotropic Gaussian
noise. In the context of surface registration, this implies that
corresponding points should correspond to the same
physical location, as illustrated in Fig. 1. This will, however,
generally not be the case, e.g., because of differences in mesh
resolution. Furthermore, point localization errors may be
highly anisotropic. Laser range scanners or Time-of-Flight
(ToF) cameras [8], for instance, typically have a much higher
localization uncertainty in the viewing direction of the
camera, which may lead to errors when establishing point
correspondences, as shown in Fig. 2a.

Although various ICP variants have been proposed in
the literature (cf., Section 2), the issue of anisotropic
localization errors has so far been given very little attention.
This may be due to the fact that all known closed-form
solutions for registering two point sets with known
correspondences implicitly assume isotropic noise, as stated
by Balachandran and Fitzpatrick [9]. The closest work to
ours was proposed by Estépar et al. [10], who proposed a
variant of the ICP that incorporates covariance matrices for
all points to be registered upon finding the optimal rigid
transformation for a set of corresponding points. It is based
on a method proposed by Ohta and Kanatani [11] for
optimal rotation estimation from two sets of points in the
presence of anisotropic inhomogenous noise. However, the
standard closest point operator based on the euclidean
distance is applied for establishing the point correspon-
dences. As a consequence of this, an increase of the
corresponding cost function may occur, and the algorithm
is not guaranteed to terminate.

Published by the IEEE Computer Society
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Fig. 1. Schematic illustration of the computation of a rigid transformation
based on a set of corresponding points in meshes A and B with (a) the
original ICP and (b) the proposed A-ICP. For a better illustration, a 2D
representation was chosen. In (a), a considerable misregistration occurs
because two of the corresponding vertices (central vertices) do not
correspond to the same physical position. In (b), we compensate for this
effect by setting the point localization accuracy based on the area of
influence of a vertex (represented by the dimensions of the ellipsoids
drawn in that direction), which leads to a decrease in the TRE.

In this paper, we present the first variant of the ICP that
accounts for anisotropic localization uncertainty in both
input point sets as well as in both steps of the algorithm and
prove that the associated cost function decreases in every
iteration. The localization error associated with a point is
integrated into the algorithm via a covariance matrix
representing a zero-mean Gaussian distribution. Depending
on the application, the latter can be defined by the user or
derived directly from the data. We will refer to this
generalized ICP variant as anisotropic ICP (A-ICP).

A preliminary version of this work was presented at the
SPIE Medical Imaging Symposium [12]. However, the
paper has been extended significantly, and all experiments
are new. Major extensions include:

1. A detailed description of the A-ICP algorithm
including a method for making its fiducial registra-
tion error (FRE) comparable to the FRE of the ICP by
Besl and McKay [6].

2. A derivation of the required covariance matrices for
a set of selected applications.

3. A variant of the algorithm for registration of partially
overlapping surfaces.

4. Means for runtime optimization.

5. New experiments with (partially) publicly available
data sets.

The remaining part of this paper is structured as follows:
Section 2 gives an overview of the ICP variants published so
far. Section 3 describes our algorithm in detail, including a
variant that can be applied to partially overlapping surfaces.
As a reasonable choice of covariance matrices is crucial to the
performance of the algorithm, Section 4 presents two
representative detailed examples for deriving covariance
matrices for selected applications. Finally, Section 5 de-
scribes the experiments we performed to assess the
performance of our algorithm, while Section 6 concludes
with a discussion of this paper in the context of related work.

2 REeLATED WORK

According to Rusinkiewicz and Levoy [13], the ICP
algorithm was introduced in parallel work by Besl and
McKay [6] and Chen and Medioni [7]. While Chen and
Medioni [7] considered the more specific problem of
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Fig. 2. (a) Schematic illustration of the establishment of point
correspondences with (a) the original ICP and (b) the A-ICP. Reference
mesh (represented by black dotted line), sparse noisy mesh (repre-
sented by connected vertices), and correspondences (boxes) are
shown for the standard closest point operator based on the euclidean
distance and the new closest point operator with less weight given to
the direction 2.

aligning range data, the paper by Besl and McKay [6]
directly addresses the registration of 3D shapes represented
by point clouds and is the most frequently cited ICP paper.
The described algorithm has the important property of
being provably convergent with respect to a least-square
distance metric and is typically regarded as the reference/
original /basis/standard ICP algorithm. In a review paper,
Rusinkiewicz and Levoy [13] classified the proposed
variants of the algorithm as affecting one of the six subtasks:

Selection (i.e., choosing subsets of X and Y).
Matching.

Weighting (correspondences).

Outlier removal.

Error metric.

6. Minimization (of the error).

Al

Below, we provide a brief review of the proposed variants,
focusing on those stages that we modified, namely,
matching, error metric, and minimization.

2.1 Selection

Choosing subsets of the input point sets provided is usually
performed with the purpose of speeding up the algorithm
and/or removing outliers. Methods proposed in this
context include uniform subsampling [14], random sub-
sampling [15], selection based on intensity or color
information [16], and selection of points such that the
distribution of normals is as large as possible (normal-space
sampling) [13].

2.2 Matching Points

In the original ICP algorithm by Besl and McKay [6], the
euclidean distance was used as the distance metric for
establishing point correspondences. Since then, a lot of
variants have been proposed which include additional
properties such as color [17], invariant features [18], [19], or
surface normals [20] in the distance metric. The application
of fuzzy correspondences was investigated repeatedly,
among others in an expectation maximization (EM) variant
of the ICP introduced by Granger et al. [21]. A technique
referred to as normal shooting [7] determines the correspond-
ing point to a point  on a range image’s surface by finding
the intersection of the reference surface with the ray defined
by p and 73 where 75 is the normal vector in p, thus
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addressing the problem illustrated in Fig. 2a. For the same
purpose, Kaneko et al. [22] proposed an M-estimation-based
method for establishing correspondences, which allows for
assigning different weights to different coordinate axes.
Furthermore, a method called reverse calibration [23], [24] has
been proposed: A given point on the mesh corresponding to
the range image is projected onto the reference mesh from the
point of view of the range camera. Other authors have
introduced point-to-ray [25] or point-to-plane [2] metrics for
addressing the same issue. Finally, Hansen et al. [26] applied
the Mahalanobis distance [27] to allow for assigning
anisotropic noise to the reference surface. One general
problem associated with this and most other methods is
the fact that they alter the convergence properties of the
algorithm. Furthermore, none of the proposed methods
allows incorporation of the covariance matrices of all input
points into the correspondence computation.

2.3 Weighting

Several authors have also investigated assigning weights to
point pairs in order to improve the robustness of the
algorithm. The proposed methods range from assigning
weights based on the interpoint distance [17], the compat-
ibility of normals [13], or colors [17] or weighting based on
the noise characteristics of a range camera [13]. However,
the weighting is generally performed using scalar values or
along certain directions of a common coordinate system
[22], and none of the proposed methods incorporate
covariance matrices in order to perform anisotropic,
inhomogenous weighting.

2.4 Outliers

As outliers have a large effect on methods based on least
squares minimization, several methods have been proposed
to detect and reject pairs that could have a negative effect on
the registration result. Among others, rejection of the worst
& percent [20], [28] pairs, rejection of pairs with a distance
above a certain threshold [13], rejection of pairs on mesh
boundaries [14], and rejection of pairs that are not
consistent with neighboring pairs [25] have been proposed.

2.5 Error Metric and Minimization

In most algorithms, the sum of squared distances between
corresponding points is minimized using one of the closed
form solutions for determining the rigid transformation that
minimizes this error (e.g., [29]). Alternatively, point-to-
point metrics incorporating color [30] or point-to-plane
metrics [7] were proposed. While closed form solutions for
determining the rigid transformation that minimizes the
mean-squared distance between corresponding points (e.g.,
[29]) exist, iterative optimization strategies must be applied
for other error metrics such as the point-to-plane metric [7].
Several strategies have been proposed to improve robust-
ness of the algorithm, including stochastic search using
simulated annealing [7], [23], multiresolution strategies [31],
using various randomly selected subsets in each step and
choosing the optimum [15], and perturbing the points [32],
[33] to prevent the algorithm from converging to only a
local minimum. As already mentioned above, Estépar et al.
[10] proposed a variant of the ICP algorithm that minimizes
an FRE that accounts for anisotropic noise in the input data.
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As the standard closest point operator based on the
euclidean distance is applied, however, convergence of
the algorithm cannot be guaranteed.

2.6 Further Variants

One of the main drawbacks of the ICP is its quadratic
complexity O(N?) with the number of points N. Hence,
various methods have been proposed for accelerating the
algorithm by using kd-trees [32], closest point caching [32],
a graphics processing unit (GPU) implementation [34], or
parallelization on the central processing unit (CPU) [35], for
example, when determining nearest neighbors. Other
variants have investigated the incorporation of prior
knowledge [36] and extending the ICP for nonrigid surface
registration [18], [36], [37], [38], [39].

In conclusion, although some of the proposed variants
address the issues associated with anisotropic localization
errors to some extent, they are generally restricted to only a
certain type/direction of uncertainty. To our knowledge, no
method has been proposed so far that generalizes the
original ICP such that prior knowledge can be integrated in
a flexible manner and convergence can still be guaranteed.

3 AnisoTRoPIC ICP (A-ICP)

In general, the goal of the original ICP [6] algorithm is to
find a rigid transformation that registers two shapes that
can be represented by two point sets X = {71,...,Zy,} and
Y ={#,...,¥n}. In the case of the original ICP, each
iteration consists of two basic steps:

1. Establishing correspondences: For each Z; € X a corre-
sponding point Z; = C(#;,Y) €Y is determined
based on the euclidean distance C(Z;,Y) =
arg mingcy ||%; — yjl|.

2. Computing the transformation: Based on the estab-
lished correspondences, a rigid transformation re-
presented by a rotation matrix R and a translation
vector ¢ is determined which minimizes the FRE,
defined as root-mean-square (RMS) distance be-
tween corresponding points:

N
FREZ, =Y ||(RE +1—3)|l5. (1)
i=1

The established transformation is then applied to the
moving point set X.

The fact that both steps of the algorithm lead to a decrease in
the FRE ensures convergence of the algorithm (cf.,
Appendix A, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2011.248.). As already mentioned above,
this procedure implicitly assumes that the input point sets
are subject to isotropic zero-mean Gaussian noise. In this
paper, we generalize the algorithm such that it can cope with
anisotropic localization errors. For this purpose, we assume
that the localization error in each point j € X UY isnormally
distributed with zero-mean and a covariance matrix
% = VS;Vy, where the columns of Vj are the principal axes
of the localization error and Sj = diag(op,1,052,053) is a
diagonal matrix with o ; representing the standard deviation
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along the principal axis j. Note that V; denotes the transposed
matrix of V;. In the following sections, we show how to
incorporate these covariance matrices into both steps of the
iterative algorithm (cf., Sections 3.1 and 3.2). We derive a
formal description of the A-ICP (Section 3.4) and normalize
the weighted FRE such that it compares to the FRE of the
original ICP in the case of isotropic homogenous noise
(Section 3.4). Finally, we introduce a variant of the A-ICP for
registration of partially overlapping surfaces (Section 3.5) and
present means for runtime optimization of the algorithm
(Section 3.6).

3.1 Closest Point Operator

To determine the anisotropically weighted distance be-
tween two points &£ and y whose localization errors are
assumed to be independent and represented by the
covariance matrices ¥z and X, respectively, we determine
the two-space cross covariance of the localization error as
Yz =Xz + 3y (cf, [40]). The anisotropically weighted
distance between ¥ and ¢ can then be defined as the
weighted euclidean distance

ew (T, ) = |Wag(@ — §)l,, 2)

_1
with the weighting matrix Wz; = wX .2 and a normalization
constant w > 0, which can be used for normalization of the
weighted FRE, as shown in Section 3.4. Note that de.,(Z, %)

represents the Mahalanobis distance [27] between  and ¥

for the case that  and ¥ are assumed to originate from a
common multivariate Gaussian distribution with covar-
iance matrix L ¥z dyew (T, 9)° = (& — ) (Ss) " (7 - §)).
Based on the weighted distance, we compute the closest
point § = C,,.,,(Z,Y) in a set of points Y to a given point Z as

Chrew(Z,Y) = arg 77]62)7/1 new (T, i) (3)
Note that in the case of zero mean, identical, isotropic noise,
we obtain covariance matrices ¥; = ¥z = ¢/ for some scalar
value ¢ and hence a weighting matrix Wi = W = —=1 for
all points Z, y, with I denoting the identity matrix. As a
consequence, the new closest point operator yields the same
result as the standard closest point operator C(Z,Y) =

arg mingey|| (€ — i)l[,-

3.2 Weighted Corresponding Point Registration
Each iteration of the generic ICP algorithm requires
computation of an optimal rigid registration based on a
set of corresponding points (Z;,7;);i =1... Ny, where Z;
represents a point in Y.! We apply an extension of a
recently published algorithm [9], [40] for registering the two
point sets X and Z = {Z,...,Zn,}. The method assumes
that the principal components of the localization error in
each point are independent and normally distributed with
zero means for both shapes, and it requires the associated
covariance matrices ¥z and Xz as input. The method
iteratively minimizes the anisotropically weighted fiducial
registration error (F'RE cighted):

1. Note that we introduced the set Z to facilitate dealing with indices. It
contains the same number of points as X and has the property that 7;
corresponds to Z;.
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N

FREzgueighted = Z HVVl(RfZ + E'f Zl)”éi (4)

=1

where W; is a fungtion of the rotation matrix R,
W; = w(RYz R + Xz) 2, and w is a normalization constant.
For this purpose, the rigid transformation is initialized by
solving 4 for isotropic, homogenous noise (i.e., with all W;
set to I). The strategy of the algorithm is then to replace, at
each iterative step, the exact, nonlinear problem of mini-
mizing (4) with a simple, linear problem, which can be
solved exactly by linear algebra. Details can be found in [9]
and [40]. For this paper, we modified the algorithm such
that the solution to the isotropic registration problem is only
used as the initial estimate if it returns a better FRE cightca
than the identity transformation. Furthermore, if
FRE,cighteq increases in an iteration, the previous transfor-
mation is returned. This case will generally not occur, but
the modification is necessary in order to guarantee conver-
gence of the A-ICP, as shown in Appendix A, available in
the online supplemental material.

3.3 Algorithm

Given the covariance matrices ¥ for each point € X UY,
the aim of the A-ICP algorithm is to find a rotation matrix R
and a translation vector ¢ such that the following error
metric is minimized:

Ny
FREi’eighted(R’ t_> = Z ||VV1(R£Z + t_'_ gzdx(l))”gﬂ (5)
=1
where idz(i) is the index of the point ym:m) = Chew(RT; +
£,Y)in Y and W; = w(RXz R + i) 2 This is achieved
by iteratively 1) establishing point correspondences with
the new closest point operator C,., given the current
alignment of the data, and 2) computing a rigid transforma-
tion for mapping the current corresponding points using
the modified corresponding point registration algorithm
(cf., Section 3.2). In each iteration, the rigid transformation
established is applied to transform the moving point set X
and to propagate the associated covariance matrices.
The details are as follows:

1. Initialize variables: k = 1; X! = X; FRE"
R =11 =(; ¥ =%z;i=1,...,Nx.
2. Compute the current corresponding points

weighted — = 00,

={zF}, i=1,...,Nx, with ZFeY being the
closest pointto Z; € X k according to the new distance
measure:
. Nk . Sk -
idz(i)" = arg min dyew (2, 7;), (6)
Sk o
2 = Yidw()t (7)

For this purpose, compute the current covariance
matrix Eﬂ , the current cross-covariance matrix 21 i
the current weighting matrix Wk !, and the Current
distance dnew(x, ,4;) for each transformed point #F €
X* and each jj; € Y as follows:

b= RMISE(RETY, (8)
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ok =3k 43, )
Wi = (s, (10
dne,w (fzka Zj]) = szkfl (fzk - ?j7) (11)

3. Compute the rotation matrix R”, the translation
vector ¢*, and the registration error FRE},; e for
mapping the point set X* onto the point set Z*
using the weighted point registration algorithm
described above with the covariance matrices X% =
%, and X '

d(i)F
)‘Vx 9

(R' %) = arg ming; Y [|WF(RE, +-2)],,
i=1

(12)

A‘Vl‘{
FRE'weighted.,k = Z HVVzk(kaz]‘ +th— _'ik)H; (13)
i=1

where W} is computed automatically by the algorithm

WE = w(RFSE (R +55) 2, (14)

4.  Apply the rigid body transformation computed in
the previous step to X* to obtain the transformed
point set X**! for the next iteration k+ 1: 2/ =
Rk:x?‘ + E' k:'

5. If |FREweighted.k — FREweighted,k—l‘ < € or the maxi-
mum number of iterations has been reached,
terminate. Otherwise, set k := k + 1 and go to step 2.

It can be seen that if the covariance matrices are set to
the identity matrix I for all points, and w is set to w = le
the weighted FRE (FRE,.ighca) (cf., 13) is identical to the
RMS distance between corresponding points and thus to
the FRE of the original ICP. Hence, the original formulation
of the ICP is obtained. As an important property, the
A-ICP can be guaranteed to terminate after a finite number
of iterations, as shown in Appendix A, available in the

online supplemental material.

3.4 Normalization of FRE

Generally, the size of FRE ightcqd is somewhat arbitrary, as
already stated in [40]. In fact, it decreases with increasing
variances of the points. For example, if we set all covariance
matrices to X = s>, we obtain the same weighting matrix
W = w(2s%]) “ — L] for all point pairs, and FRE,cigtcd

V2s?

and FREq (the FRE of the original ICP) are related by

2
FRE? Nw

weighted = 242 FREstd-

(15)
Consequently, the two FREs and thus the convergence
thresholds for the original ICP and the A-ICP are not
comparable, although both algorithms should produce the
same result in this case (isotropic, homogeneous noise).
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While the choice of w has no influence on the corresponding
points that are established or on the transformation that is
computed by the corresponding point registration method,
it may be used to normalize the weighted FRE. Setting it to

2
w=85/—

K (16)

makes the convergence thresholds for the original ICP and
the A-ICP directly comparable for this case of isotropic,
homogenous noise. For the general case (anisotropic,
inhomogenous localization errors), Danilchenkov and
Fitzpatrick addressed the issue in the weighted correspond-
ing points registration algorithm by requiring that

Nx

Ztrace(W[I/Vi') =3. (17)

i=1
However, we cannot apply this principle because corre-
sponding points may potentially change from one iteration
to the next, and we need to make sure that the same FRE is
minimized in the steps establishing correspondences and
computing the transformation. One solution to this problem
is to normalize the covariance matrices such that their traces
are identical, as discussed in Section 4.3. This implies,
however, that we cannot give less weight to those points
with higher variance when computing the transformation.
In order to be able to leave the covariances unmodified but
still obtain comparable thresholds, we propose the follow-
ing procedure. Initially, we compute the mean variances
px(0?) and py(0?) for both input point sets (each averaged
over all three principal axes and all Nx/Ny points). If we
then set s> = M, FREg, and FRE,igntea Would
again be related by 16 in the case of isotropic homogenous
noise. Hence, if we setw = s %, the convergence thresholds
estg used for the original ICP roughly compares to the
threshold e€cighica-

3.5 Trimmed Variant of the A-ICP

In its original form, the A-ICP requires the surface given by
X to represent a part of the surface given by Y because a
corresponding point is sought for each x € X. In order to
allow for registration of partially overlapping surfaces, we can
modify the algorithm, following the idea of the trimmed
ICP [28]. It is based on a parameter £ > 0, called minimum
overlap, which represents the minimum guaranteed portion
of the data points that can be paired. After step 2 of the
algorithm, we sort all weighted distances in increasing
order and use only the best £ percent correspondences as
input for step 3 of the algorithm. It can be proven that the
convergence properties are not affected by doing this
because both steps of the algorithm still decrease the
weighted FRE. If we were to apply the described trimmed
version of the A-ICP without any further changes, however,
there could be a bias toward points with high variance.
Consider two point pairs (7;, Z;) and (%}, Z;) with the same
euclidean distance |7} — ||, = || — Zj||, but a different
weighted difference dpew (s, %) < dnew(Zj, Z;) due to higher
variances associated with the first point pair. In the original
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version of the A-ICP, the pair with higher variance would
contribute less to the transformation than the second pair,
which is generally a desirable property. However, in the
trimmed A-ICP, the sorting of the distances could poten-
tially lead to exclusion of the potentially more reliable
second point pair, while the first pair would be within the
set of best pairs due to its smaller weighted distance. This
issue can be addressed by performing a weight normal-
ization as described in Section 4.3.

3.6 Runtime Optimization

As already mentioned in Section 2, one of the main
drawbacks of the ICP is the quadratic complexity of
establishing correspondences, which, however, can be
reduced to O(NxlogNy) by applying kd trees. Unfortu-
nately, this concept cannot be directly applied to the
A-ICP because weighted distances are required. To make
the correspondence search more efficient, we initialize the
A-ICP with the (faster) original ICP to determine a good
starting pose for the iterative refinement. Furthermore, we
propose constraining the search of the weighted nearest
neighbor to a certain radius r from the point of interest.
For this purpose, step 2 of the proposed algorithm is
modified such that weighted distances are only computed
for pairs of points whose euclidean distance to each other
is smaller than r. A kd tree is applied to determine those
points Y} C Y that are located within a distance r to a
given point 7 € X*. If the weighted FRE is higher than in
the previous iteration, the procedure is repeated with an
increased radius r := 2r. This makes sure that FRE,cightca
never increases and convergence can still be guaranteed.

4 DERIVATION OF COVARIANCE MATRICES

As a reasonable choice of covariance matrices is crucial to
the performance of the algorithm (remember that isotropic
homogenous noise results in the original ICP), this section
presents two representative detailed examples for deriving
covariance matrices for a given application.

4.1 Accounting for Mesh Resolution

Let us assume that we want to rigidly register two surface
meshes generated from two potentially different image
modalities. As the original ICP implicitly assumes that the
input point sets are observed with zero-mean, identical, and
isotropic Gaussian noise, it requires corresponding points to
correspond to the same physical location. This may lead to a
suboptimal registration result, as illustrated in Fig. 1a. To
compensate for this effect, we propose increasing the
variance along the surface based on the Voronoi region of
a point (cf., Figs. 1b and 3a). Intuitively speaking, our idea is
as follows: Two points should get a small weighted distance
if we can match them by moving them around within their
Voronoi region. While a movement away from the original
vertex position but along the surface should only result in a
small increase in the distance, movements away from the
surface should increase the distance significantly.

To define the covariance matrix for a point jbased on this
idea, we need to determine three principal axes arranged in
the columns of a matrix V; and a diagonal matrix S; =
diag(op,1,052,053) with o5, representing the standard
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Fig. 3. (a) Vertex p and its Voronoi region with area A;. After A-ICP-based
registration with a second mesh, the vertex corresponding to 5 should be
located within the Voronoi region of 5. Hence, instead of forcing an exact
matching of points upon computing the rigid registration, we allow a
certain distance along the surface. (b) In flat regions, a movement
perpendicular to the surface normal (represented by o, fac.) COrresponds
to a movement along the surface. (c) In general, however, a movement
along the surface additionally requires a movement along the surface
normal (represented by ,,5rmai)-

deviation along the principal axis j (051 > 02 > 0j2). The
covariance matrix of § can then be set to ¥; = V};S;V;ﬁ’. The
following two paragraphs describe two different methods
for defining V; and Sj. In both methods, one principal axis is
set along the surface normal n; with variance o2 ,, while

the two remaining principal axes are set perpendicular to n;

: : 2 2
with variances o3, 1.1 and 0%, 1.0 o-

4.1.1 Voronoi-Based Method for Covariance Matrix
Computation (CM_VORONOI)

The two principal axes representing the localization error
along the surface are set perpendicular to n; in an arbitrary
fashion and assigned the same variance o7, fy.c = 0% fuce1 =
0% facenr Which is derived from the Voronoi region of j as
follows: Consider two different vertices p; and pj;, each
located on a flat part of a mesh. Let us further assume the
Voronoi areas Aj; and Aj; to be approximately square-
shaped, with edge length r; = \/A; and r; = /A;, as
illustrated in Fig. 3a. Now, if r; and r; are related by a
constant ¢, i.e., r; = c-7;, we want the standard deviations
along the surface, o face (Pi) and oy face (P;), to be related by
the same factor. This can be achieved by setting the sum of the
variances o? for each vertex p proportional to Aj:

surface
(18)

where (3 is a scaling factor because this implies o4y foce = % 7.

The standard deviations of the vertices from our example,
Osurface(Di) and oy face (Pj), would thus be related by

Osur ace(ﬁi) = ﬁri = ﬁc' Ty =C- Osur ace(ﬁ')~
f 5 V2 J i J

2 2 24
Usurface + Usurface - ﬂ AP’

(19)

If we assume our mesh to be noise free, we could further set
Onormal = 0. It is well known that the trace of a square matrix
equals the sum of its eigenvalues; hence, the trace of a
covariance matrix equals the sum of the variances along the
individual principal axes. Consequently, (18) requires the
trace of ¥ to be proportional to the Voronoi area:

trace(X5) = B*Aj. (20)

Let us now generalize this idea to the case where the
Voronoi region of a point g is not necessarily located on a
plane. In the previous example, our idea was to account for
the high-localization error along the surface by using a high
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variance in the direction perpendicular to the surface
normal. While this procedure is reasonable in flat surface
regions, it does not produce the desired result in regions
with high curvature, as illustrated in Fig. 3. The reason is
that if we move a point strictly perpendicularly to the
surface normal, we do not really stay on the surface. For this
reason, we introduce a scaling factor « € [0; 1] which relates
the variance along the surface normal o2, ., with the
variance along the surface Uf,u,‘fa(‘,e: Onormal = O Tsur face-
Typically, we will set o to a value close to 0, indicating
that the localization error occurs primarily perpendicularly
to the surface normal. Alternatively, o can be set individu-
ally for each vertex, based on the curvature at that point, for
example. Motivated by the example related to Fig. 3a, we
keep the Voronoi area as a measure of the variance in a
vertex p by requiring 20 to hold. Due to this normalization,
we can initialize oy fec With an arbitrary value, e.g.,
Osurface = 1 mm. It is worth noting that if the same method
for covariance computation is used for both input meshes,
the scaling factor 3 has no influence on the registration
result and can thus be set to a standard value 3 = 1.

4.1.2 Principal Component Analysis (PCA)-Based
Method for Covariance Matrix Computation
(CM_PCA)

The previous method uses arbitrary axes along the surface.

The aim of this method for covariance computation is to

account for different spreads of neighboring vertices in

different directions as follows: One principal axis of localiza-
tion error is set in the direction of the surface normal n; and all
vertices in the closed neighborhood of j are projected onto the
plane with normal n; that passes . Next, a PCA is performed
on the projected points to obtain the second and third
principal axes of localization error. The variance representing
the localization error along a given principal axis is then set to
the variance obtained from projecting all vertices in the

closed neighborhood of  onto that axis and multiplied by a

scaling factor 3. Again, if the same method for covariance

computation is used for meshes, the scaling factor 5 has no

influence on the registration result and can thus be set to a

standard value 3 = 1.

4.2 Accounting for Noise in Time-of-Flight (ToF)
Cameras (CM_TOF)

Itis well known that range cameras (e.g., ToF cameras) have a
much higher localization uncertainty in the direction of view
of the camera than orthogonal to that direction [8]. Based on
the standard pin-hole camera model, this issue can be
accounted for by setting the first principal axis of noise along
the ray connecting the imaged object point  to the center of
the associated chip pixel (on the image plane) and assigning a
high variance ofay in that direction. The remaining two
principal axes are set orthogonal to that ray (in an arbitrary
fashion) with a small variance o7,,,,,,- The standard deviation
0,4y along the ray can, for example, be set to a constant value
depending on the distance of the object being examined from
the camera or be estimated from a set of distance images as
described in [41]. This method for covariance computation
will be referred to as CM_TOF. It will typically be combined
with one of the methods for covariance matrix computation
described previously when matching a ToF surface to a
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reference surface. In this case, the scaling factor 8 of
CM_VORONOI and CM_PCA weighs the influence of the
covariance matrices addressing mesh resolution relative to
the influence of the covariance matrices addressing the noise
in ToF cameras.

4.3 Normalization of Covariance Matrices

All of the methods described for covariance computation
potentially lead to an unequal distribution of variances
among the points. As a higher variance decreases the
weighted distance between points, this effect may not be
desirable. For example, in the trimmed version of the
A-ICP, there would be a bias toward points with high
variance, as discussed in Section 3.4. One way to overcome
this issue to some extent is to normalize the covariance
matrices such that they represent the same amount of
variance. As already mentioned above, the trace of a
covariance matrix equals the sum of the variances along
the individual principal axes. We can thus normalize the
covariance matrices by requiring their traces to be identical:

trace(X5) =c pe XUY. (21)

This implies that we assume the localization error in p, often
referred to as fiducial localization error (FLE), to be the
same for all points 7 (i.e., <FLE]27> = trace(X5) = ¢), while
we allow their anisotropies to vary. Furthermore, the
normalization has another desirable side effect. As already
mentioned in Section 3.4, the size of the weighted FRE is
somewhat arbitrary because it decreases with increasing
variances. Let us now assume that we normalize all
covariance matrices such that their traces are equal to c.
The mean variance averaged over all points & € X and all
their principal axes will then be

Ho? (X) =

Analogously, one can show that the mean variance y,2(Y)

averaged over all points § €Y is £

3-
Z¢, we obtain comparable convergence thresh-

olds for the ICP and the A-ICP.

Consequently, if we

set w =

5 EXPERIMENTS AND RESULTS

We performed a range of experiments to evaluate the
performance of our algorithm in the context of whole
surface registration (Section 5.1), partial surface registration
(Section 5.2), and registration of partially overlapping
surfaces (Sections 5.3 and 5.4). Furthermore, the runtime
of the algorithm (Section 5.5) and its convergence properties
(Section 5.6) were assessed. For all experiments, we used
our own C++-based implementation of the A-ICP, which
was successfully integrated into the Medical Imaging Inter-
action Toolkit (MITK) (www.mitk.org). The implementation
of the original ICP by The Visualization Toolkit (VTK), which
makes use of kd-trees [32] for correspondence search,
served as a basis for comparison.
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(a) Bunny

(b) Laurana

(¢) Montblanc

Fig. 4. Meshes used for the experiments.

5.1 Whole Surface Registration

In this experiment, we used publicly available surface
meshes from three different shapes: the well-known
Stanford Bunny,2 the statue Laurana,® and a landscape,
referred to as Montblanc* (cf., Fig. 4). All meshes were
moved to the origin and (if necessary) scaled such that they
had realistic sizes in mm.” For each shape, a set of targets
distributed within the object were then defined and two
different decimations, consisting of approximately 1,000
and 3,000 vertices, respectively, were generated with the
quadric edge collapse decimation method provided by
MeshLab.® Let T'(z,y) denote the rigid transformation that
represents a translation by « along each coordinate axis and
a rotation about y about each axis. In this experiment, the
transformation 7'(20 mm,20°) was applied to the higher
resolution meshes (i.e., the ones with 3,000 vertices) of the
Bunny and Laurana while T(20 m,20°) was applied to
Montblanc.

Both the original ICP and the A-ICP (with initialization
by the ICP) were then applied to register different surfaces
of the same shape in pairs. The A-ICP was applied with
both methods of covariance computation introduced in
Section 4.1. For this purpose, the parameter a for CM_VOR-
ONOI was varied from 0 to 1. Note that a variation of the
scaling factor § would not yield different results, because we
use the same method for covariance computation for both
input shapes. The convergence threshold e was set to 107> m
for Montblanc and to 10~°> mm for the two other shapes. We
performed a normalization of the weighted FRE according to
Section 3.4 in order to make the thresholds for the ICP and the
A-ICP comparable. After convergence of the algorithms, the
target registration error (TRE), which we defined as the RMS
distance between the estimated target position and the
corresponding ground truth position, was determined. The
same experiment was then performed with noisy variants of
the applied meshes. For this purpose, we applied Gaussian
noise along all vertex normals, using a standard deviation of
1 m for Montblanc and of 1 mm for both other shapes.

The results of the experiments with whole surfaces are
presented in Figs. 5 and 6. The mean decrease in TRE
averaged over all meshes was 78 percent (CM_VORONO],

2. Provided by Stanford University Computer Graphics Laboratory,
http://graphics.stanford.edu/data/3Dscanrep/.

3. Provided by the Institute of Information Science and Technologies
(ISTI, Pisa, Italy).

4. Provided courtesy of DISI (Department of Computer and Informa-
tion Science, University of Genova, Italy) by the AIMQSHAPE Shape
Repository.

5. The original shapes are provided without units and fit into the unit
sphere.

6. meshlab.sourceforge.net.
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(d) Abdomen (e) Knee

a = 0.1) and 72 percent (CM_PCA) in the case of the ideal
meshes and 56 percent (CM_VORONOI, «=0.3) and
50 percent (CM_PCA) for the noisy meshes. Fig. 6 further
shows the results for the CM_VORONOI method as a
function of the parameter « € [0;1]. The mean number of
iterations required by the original ICP was 48 (without
noise) and 49 (with noise), while the A-ICP used an
additional number of six iterations averaged over all cases.

5.2 Partial Surface Registration

One of the key challenges related to computer-assisted
medical interventions is the registration of intraoperative
patient data with preoperative data. One increasingly
popular approach to achieve this is to acquire surface data
during the intervention using a laser scanner [3], for
example, and to match the resulting partial surface mesh
with a corresponding mesh extracted from 3D medical
imaging data.

In this experiment, we used three data sets generated
from human bodies: an Abdomen and a Knee segmented
from computed tomography (CT) data, as well as the Head
of a publicly available Torso” (cf., Fig. 4). For each mesh, an
ideal ToF image was created with an approximately ventral
view of the camera on the patient. Based on the ideal depth
map, a noisy partial surface was generated with the
simulation framework presented in [41]. All reference
meshes were then decimated so that they featured about
2,500 vertices and transformed with the transformation
T'(20 mm, 20°). In the case of the Abdomen and the Knee, the
partial surfaces were cut to ensure that only part of the
visible body parts’ surfaces was captured with the virtual
ToF camera, which led to a more challenging registration
task. Both, the original ICP and the A-ICP (with initializa-
tion by the ICP) were then applied to register the partial
ideal and noisy ToF surfaces with the whole surfaces. In the
case of the ideal images, the methods CM_PCA and
CM_VORONOI were used for both methods with the
default parameter a = 0.1. For the noisy ToF surfaces, the
CM_PCA method (used for both meshes) and the CM_TOF
method combined with CM_VORONOI or CM_PCA were
applied. For CM_TOF, the standard deviation along the
camera ray for a given object distance was obtained from
the simulation framework described in [41], while ouera
was set to 0.1 mm as proposed in [41]. Furthermore,
CM_VORONOI and CM_PCA were used for the reference
surfaces with the default values =2 for homogenous
surfaces (here: Skin and Knee) and =1 for surfaces

7. Provided courtesy of Alexandre Olivier-Mangon and George Drettakis
(Institut National de Recherche en Informatique et en Automatique (INRIA),
Nice, France) by the AIMQSHAPE Shape Repository, http://shapes.aim-at-
shape.net.
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Fig. 5. Results for whole surface registration. The TRE for a set of
targets distributed within the surfaces is given in mm for the Bunny and
Laurana and in m for Montblanc.

featuring curved regions (here: Head). Note in this context
that the problem illustrated in Fig. 2a occurs primarily in
curved regions. Again, we performed a normalization of the
weighted FRE according to Section 3.4 and used a
convergence threshold of e = 107> mm for both methods.
After convergence of the algorithms, the TRE was deter-
mined as in the previous experiment.

The results of this experiment are given in Fig. 7. The mean
decrease in TRE averaged over all meshes without noise was
86 percent for both methods (CM_VORONOI and CM_PCA).
In the case of the noisy ToF images, the mean decrease in TRE
ranged from 68 to 80 percent. The mean number of iterations
required by the original ICP for these experiments was
122 (ideal) and 136 (noisy). Application of the A-ICP required
an additional number of 15 (CM_VORONOI) and 16
(CM_PCA) iterations for the ideal meshes and an additional
number of 28 (CM_TOF and CM_VORONOI), 35 (CM_TOF
and CM_PCA), and 42 (CM_PCA and CM_PCA) iterations in
the case of the noisy meshes.

5.3 Registration of Partially Overlapping Surfaces

Many applications require registration of partially over-
lapping surfaces. For example, if we look at our previous
example, the range image of the Abdomen or the Knee may
potentially represent a larger portion of the body than the CT
image. To address this issue, we cut the reference shapes
such that only a partial overlap between the ToF surfaces
and the reference surfaces was obtained, as shown in Fig. 9c.

1 —+— Bunny
0.8 : ~' =& Laurana
w 06 — -+ Montblanc
04 - = =
o
of
0 0.2 04 0.6 0.8 1
alpha

(a) decimated surfaces
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23 = Standard ICP ® Standard ICP
2 = A-JCP (CM_VORONOI) ® A-CP (CM_TOF,CM_VORONOI)
= A-ICP (CM_PCA) = A-ICP (CM_TOF.CM_PCA)
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o
Abdomen Knee
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Fig. 8. Results for partially overlapping surface registration. The TRE for
a set of targets distributed within the reference meshes is given for both
(a) the ideal ToF images without noise and (b) the physically realistic
noisy Tof surfaces.

The experiment described in the previous section was then
repeated with trimmed versions (overlap: 70 percent for the
Abdomen and 50 percent for the Knee) of the ICP and the
A-ICP. All methods were applied with and without
covariance normalization (cf., Section 3.4).

The results of this experiment are shown in Fig. 8. The
mean decrease in TRE averaged over all meshes without
noise was about 96 percent. In the case of the noisy ToF
images, the mean decrease in TRE ranged from 72 to
79 percent. For the normalized variant, we obtained similar
results (not shown here). The mean number of iterations
required by the original ICP for these experiments was 578
(ideal) and 552 (noisy). Application of the A-ICP required
an additional number of 5 (CM_VORONOI) and 7
(CM_PCA) iterations for the ideal meshes and an additional
number of 19 (CM_TOF and CM_VORONOI), 18 (CM_TOF
and CM_PCA), and 39 (CM_PCA and CM_PCA) iterations
in the case of the noisy meshes. Fig. 9 shows a registration
result for the Abdomen with 50 percent overlap.

5.4 Stitching

One important application for registration of partially
overlapping surfaces is the reconstruction of a 3D model
from a set of range images, also referred to as stitching. To
evaluate the performance of the A-ICP algorithm for this
purpose, we simulated three range images of the statue
Laurana, representing a pose of —90, 0, and 90 degrees

1 —+— Bunny
0.8 e -# Laurana
w 0.6 = = Montblanc
(= 0.4W
024 -
a "
0 0.2 0.4 0.6 08 1
alpha

(b) noisy decimated surfaces

Fig. 6. Results for the A-ICP applied to the whole surfaces. The TRE is shown in mm (Bunny, Laurana) and m (Montblanc) as a function of the

parameter a =
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Fig. 7. Results for partial surface registration. The TRE for a set of targets distributed within the reference meshes is given for both (a) the ideal ToF

images without noise and (b) the physically realistic noisy Tof surfaces.



MAIER-HEIN ET AL.: CONVERGENT ITERATIVE CLOSEST-POINT ALGORITHM TO ACCOMODATE ANISOTROPIC AND INHOMOGENOUS...

1529

(a) misalignment

(b) trimmed ICP

(c) trimmed A-ICP

(d) trimmed ICP (e) trimmed A-ICP

Fig. 9. (a)-(c) Registration of noisy mesh generated from simulated ToF range data to a reference mesh of a human abdomen using the trimmed
version of the ICP and the A-ICP with ¢ = 50 percent. (a) Initial misalignment after application of the transformation 7°(20 mm, 20°), (b) registration
result after application of the ICP, and (c) result after application of the A-ICP. (d)-(e) Stitching result for (d) the original ICP and (e) the A-ICP with
method CM_PCA for covariance computation. The red and green range images were registered to the white one.

relative to the virtual range camera. We then applied the
trimmed version of the ICP and A-ICP for registering the
partial surfaces using an overlap of { =30 percent. The
results are shown in Figs. 9d and 9e. Application of the
A-ICP led to a decrease of the TRE by 97 percent (CM_PCA,
TRE 0.3 mm) and 98 percent (CM_PCA, normalized, TRE
0.2 mm) compared to the original ICP (TRE 9 mm).

5.5 Runtime Assessment

To demonstrate the suitability of our method for runtime
optimization, we repeated two of the previous experiments
(whole surface registration with the Bunny and partial
surface registration with the Head) with a varying search
radius. Registration of the Bunny (approximately 1,000 and
3,000 vertices) took 200 s without runtime optimization and
600 ms with runtime optimization (search radius: 1 cm).
Registration of the Head (about 5,000 and 2,500 vertices)
took 1,650 s (i.e., about 28 min.) versus 6 s. In both cases, this
corresponds to a decrease in runtime by a factor > 100. The
corresponding computing times for the original ICP were
approximately 100 and 800 ms, respectively. Fig. 10 shows
the mean time per iteration of the A-ICP with runtime
optimization as a function of the search radius for both
meshes.

5.6 Convergence

In the above experiments, we always initialized the A-ICP
with the original ICP algorithm for the purpose of runtime
optimization. To demonstrate the favorable convergence
properties of the A-ICP, we repeated some of the experiments
described in Sections 5.1-5.3 without ICP initialization and
with different initial alignments 7'(z mm, z°) (c.f., Section
5.1). We used the Bunny without noise for whole surface
registration, the Abdomen for partial surface registration, and
the Knee for registration of partially overlapping surfaces.
Starting with no misalignment, i.e., x = 0, we successively
increased x by 10 (millimeters and degrees, respectively) until
both the original and the A-ICP, failed to converge to a pose

a

n
]

Time [s]

—Bunny
] - Heaad

o
[] ] n 0 0 50 )
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Fig. 10. Mean time per iteration as a function of the search radius.

close to the optimum (TRE < 10 mm). For the A-ICP, we used
the covariance method CM_PCA for both shapes in all
experiments and no search radius. The results of the
experiment, presented in Table 1, show that the A-ICP is
much more robust with respect to the initial misalignment.
Furthermore, it requires considerably fewer iterations (typi-
cally 50 percent less).

6 DiscussIiON

In this paper, we presented a variant of the ICP that accounts
for anisotropic and inhomogenous localization errors. We
showed how to normalize the defined weighted FRE such
that it is comparable to the FRE of the original ICP and
proved that the defined cost function decreases in every
iteration. Furthermore, we described how to apply the
algorithm for robust fine registration of surface meshes. An
evaluation using publicly available surface meshes as well as
a set of meshes extracted from medical imaging data showed
a dramatic increase in accuracy compared to the original
ICP, especially in the case of partial surface registration.
The two methods for accounting for mesh resolution,
namely, CM_VORONOI and CM_PCA, yielded similar
results. The main advantage of the PCA-based method is
that it accounts for different spreads of the vertices along the
surface and that it requires no parameters. Furthermore, it is
potentially more robust to noise because it adjusts the
variance along the surface normal depending on the
distribution of the vertices. The Voronoi-based method, on
the other hand, is simple to implement and computationally
very efficient. Despite the excellent results of both methods,
one might argue that in this particular scenario, it would
make more sense to use the covariance matrices for
computation of the transformation only, and apply the
standard euclidean distance for establishment of correspon-
dences because the covariance matrices do not actually
represent noise in the data (cf., Fig. 1a). In that case, however,
there would no longer be any guarantee of convergence of
the algorithm. One possibility to address this issue is to
normalize all covariance matrices such that they represent
the same amount of variance as described in Section 4.3.
However, we did not generally obtain better results with this
method. In fact, not even in the case of the trimmed A-ICP
did the normalization yield an improvement. One possible
explanation for this is that point pairs with high variance
contribute more to the transformation after the normal-
ization process, which is generally not desirable. Hence, this
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TABLE 1
Results for the Convergence Experiment Showing the TRE (in mm) and the Number of Iterations in “()”
for Different Shapes and Different Initial Misalignments
Shape \ Method H TO \ T10 \ T20 \ T30 \ T40 \ T50 \ T60 \ T70 \ T80 \ T90
Bunny ICP 0.3(14) | 0.6(27) 0.6(35) 0.4(38) 0.6(42) 0.5(50) 0.5(53) 0.5(58) | 0.592) | -
A-ICP 0.1(7) 0.1(14) 0.1(16) 0.1(20) 0.1(24) 0.1(27) 0.1(33) 0.1(38) | 0.1(46) | 0.1(52)
Abdomen | 1CP 1.9(41) | - - - - - - - - -
A-ICP 1.0(7) 1.4(90) 2.4(110) | - - - - - - -
Knee ICP 0.3(16) | 1.5(193) | 1.5(370) | - - - - - - -
A-ICP 0.4(19) | 0.4(83) 0.3(145) | 0.4(245) | 0.4(305) | 0.4(329) | 0.4(348) | - - -

“

-“represents a TRE > 10 mm.

negative effect may cancel out the positive effect of the
normalization on the selection of correspondences.

When registering ToF data, the ToF specific method
CM_TOF combined with CM_PCA or CM_VORONOI
yielded results similar to those yielded by the PCA method
applied to both surfaces. The results were similar, although
the noise in the ToF data was modeled quite accurately [41].
One possible explanation for this phenomenon is the fact
that the CM_TOF method requires a scaling factor (5 to be
set for the covariance method of the reference surface.
Although the registration result was very robust with
respect to the choice of 5, we observed that with the optimal
B, CM_TOF could always outperform CM_PCA. Further
investigation of the parameter could thus lead to an even
better registration result. On the other hand, the CM_TOF
method is rather complicated compared to the CM_PCA
method, for example, because it requires the intrinsic
camera parameters of the device that was used to record
the data as well as the noise characteristics of the camera as
input. Note, in this context, that CM_PCA could readily be
applied to range data obtained from a different modality
without specifying the error characteristics (e.g., a struc-
tured light system, which typically yields higher errors in
camera direction as well). Furthermore, CM_TOF cannot be
applied for registering two (partially overlapping) ToF
surfaces because in the current version, the resolution of the
ToF mesh is not taken into account. Note that the
intervertex distance in surfaces generated from ToF range
images generally increases with 1) an increasing angle of
the surface relative to the image plane, 2) an increasing
distance of the object under observation from the camera,
and 3) an increasing distance from the ray representing the
center pixel. For all these reasons, we recommend the
CM_PCA method for registration of ToF data.

Despite the promising results of our study, one might
argue that one could obtain similar results for the original
ICP by upsampling and denoising the meshes. Although this
would be computationally expensive, the runtime of the ICP
with these improvements might still be better than that of the
A-ICP. While this is a valid objection, it is only relevant to
some extent because 1) as we are dealing with discrete
surface data, there will always be some remaining uncer-
tainty along the surface that is worth being accounted for,
and 2) there is a lot of room for improving runtime. The most

obvious extension is the parallelization of the nearest
neighbor search based on a GPU implementation. Further-
more, the multicore technology of state-of-the-art personal
computers could be used to parallelize various modules of
the software (computation/propagation of covariance ma-
trices, transformation of moving points, etc.). In addition, the
convergence threshold for the original ICP could be
increased, reflecting the fact that we do not need an optimum
registration result with respect to the unweighted FRE, but
only a good guess at initialization of the A-ICP. Similarly, in
each iteration, the convergence threshold for the weighted
corresponding point registration (cf., Section 3.2) could be
increased because we do not necessarily need an optimal
transformation while the correspondences are changing.
Alternatively, decreasing the maximum number of iterations
of the weighted corresponding point algorithm could
decrease the runtime. Furthermore, it should be noted that
weighting matrices computed by the corresponding point
registration algorithm in iteration & can be reused for nearest
neighbor computation in iteration k + 1 of the A-ICP. Finally,
as the proposed method is able to account for the mesh
resolution, it is potentially robust to downsampling of
meshes, which, in turn, would decrease runtime. Based on
these optimizations, it may even be beneficial to apply the
A-ICP without initialization by the ICP (which is currently
done for the purpose of runtime optimization). In fact, our
experiments show that the convergence properties of the
A-ICP are generally better than that of the original ICP with
respect to the number of iterations.

It is worth mentioning that this paper investigated
registration of meshes that essentially represented the same
shapes—deformations or systematic errors have not yet been
taken into account. Hence, future work includes rigid
registration of meshes that are subject to systematic errors.
Furthermore, it could be argued that we should have
compared the A-ICP to one of the more recently proposed
variants of the ICP as opposed to the orginal one. One reason
for this was that convergence played an important role in the
development of our algorithm, and only very few ICP
variants can be guaranteed to converge. Those that do have
not generally been designed to address anisotropic localiza-
tion errors. Nevertheless, we are planning to compare our
algorithm with different variants of the ICP (e.g., [21]) as well
as with other methods proposed for fine surface registration
(e.g., [42]) in an application-specific manner, i.e., with the aim
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of selecting the best performing algorithm for a given
application. For this purpose, our software will be available
for download upon publication of this paper at
www.mitk.org/wiki/projects/ AnisotropicICP.

In conclusion, we proposed a generalization of the ICP
that keeps the main advantages of the original ICP
algorithm, namely, the guaranteed convergence, the general
applicability in various fields, and the straightforward
implementation, while targeting one of the key issues: the
assumption of isotropic localization errors in the input data.
In all our experiments, registration accuracy was improved
considerably, which confirms the robustness of the method.
Because of its flexibility in incorporating prior knowledge,
its convergence properties, and the dramatic improvement
in accuracy compared to the original ICP, we consider our
generalization of the ICP to be an important work in the
context of fine surface registration. As point-based surface
registration is a central component in various settings, the
potential impact of the proposed method on future
applications is high.

ACKNOWLEDGMENTS

The authors would like to thank U. Rietdorf, M. Engel, and
A. Seitel (DKFZ) as well as B. Radeleff and C. Sommer
(University of Heidelberg) for providing the medical
imaging data. This work was supported by the German
Research Foundatation (DFG, PD 15577).

REFERENCES

[1] P. Yan and K.W. Bowyer, “Biometric Recognition Using Three-
Dimensional Ear Shape,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 29, no. 8, pp. 1297-1308, Aug. 2007.

[2] L. Armesto, J. Minguez, and L. Montesano, “A Generalization
of the Metric-Based Iterative Closest Point Technique for 3D
Scan Matching,” Proc. IEEE Int’l Conf. Robotics and Automation,
pp. 1367-1372, 2010.

[3] D.M. Cash, M.I. Miga, S.C. Glasgow, B.M. Dawant, L.W.
Clements, Z. Cao, R.L. Galloway, and W.C. Chapman, “Concepts
and Preliminary Data Toward the Realization of Image-Guided
Liver Surgery,” ]. Gastrointestinal Surgery, vol. 11, pp. 844-859,
2007.

[4] EM. Bispo and R.B. Fisher, “Free-Form Surface Matching for
Surface Inspection,” Proc. Sixth IMA Conf. Math. of Surfaces,
pp. 119-136, 1994.

[5] O. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or, “A
Survey on Shape Correspondence,” Computer Graphics Forum,
vol. 30, no. 6, pp. 1681-1707, 2011.

[6] P.J. Besl and N.D. McKay, “A Method for Registration of 3D
Shapes,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239-256, Feb. 1992.

[7] Y. Chen and G. Medioni, “Object Modeling by Registration of
Multiple Range Images,” Int'l ]. Computer Vision and Image
Understanding, vol. 10, pp. 145-155, 1992.

[8] R.Lange, “3D Time-of-Flight Distance Measurement with Custom
Solid-State Image Sensors in CMOS/CCD-Technology,” PhD
thesis, Univ. of Siegen, 2000.

[9] R.Balachandran and J.M. Fitzpatrick, “Iterative Solution for Rigid-
Body Point-Based Registration with Anisotropic Weighting,” Proc.
SPIE, vol. 7261, no. 1, pp. 72613D-1-72613D-10, 2009.

[10] R.S]J. Estépar, A. Brun, and C.-F. Westin, “Robust Generalized
Total Least Squares Iterative Closest Point Registration,” Proc.
Medical Image Computing and Computer-Assisted Intervention,
pp. 234-241, 2004.

[11] N. Ohta and K. Kanatani, “Optimal Estimation of Three-
Dimensional Rotation and Reliability Evaluation,” Proc. Fifth
European Conf. Computer Vision, pp. 175-187, 1998.

1531

[12] L. Maier-Hein, T.R. dos Santos, A.M. Franz, H.-P. Meinzer,
and J.M. Fitzpatrick, “Iterative Closest Point Algorithm with
Anisotropic Weighting and Its Application to Fine Surface
Registration,” Proc. SPIE, vol. 7962, pp. 79620 W-1-79620 W-9,
2011.

[13] S. Rusinkiewicz and M. Levoy, “Efficient Variants of the ICP
Algorithm,” Proc. Third Int’l Conf. 3D Digital Imaging and Modeling,
pp- 145-152, 2001.

[14] G. Turk and M. Levoy, “Zippered Polygon Meshes from Range
Images,” Proc. ACM Siggraph, pp. 311-318, 1994.

[15] T. Masuda, K. Sakaue, and N. Yokoya, “Registration and
Integration of Multiple Range Images for 3D Model Construc-
tion,” Proc. 13th Int’l Conf. Pattern Recognition, pp. 879-883, 1996.

[16] S. Weik, “Registration of 3D Partial Surface Models Using
Luminance and Depth Information,” Proc. Int’l Conf. Recent
Advances in 3D Digital Imaging and Modeling, pp. 93-100, 1997.

[17] G. Godin, M. Rioux, and R. Baribeau, “Three-Dimensional
Registration Using Range and Intensity Information,” Proc. SPIE,
vol. 2350, pp. 279-290, 1994.

[18] J. Feldmar and N. Ayache, “Rigid, Affine and Locally Affine
Registration of Free-Form Surfaces,” Int’l |. Computer Vision,
vol. 18, no. 2, pp. 99-119, 1996.

[19] G.C. Sharp, SW. Lee, and D.K. Wehe, “ICP Registration Using
Invariant Features,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 24, no. 1, pp. 90-102, Jan. 2002.

[20] K. Pulli, “Multiview Registration for Large Data Sets,” Proc. Second
Int’l Conf. 3D Digital Imaging and Modeling, pp. 160-168, 1999.

[21] S. Granger, X. Pennec, and A. Roche, “Rigid Point-Surface
Registration Using an EM Variant of ICP for Computer Guided
Oral Implantology,” Proc. Fourth Int’l Conf. Medical Image Comput-
ing and Computer-Assisted Intervention, pp. 752-761, 2001.

[22] S. Kaneko, T. Kondo, and A. Miyamoto, “Robust Matching of 3D
Contours Using Iterative Closest Point Algorithm Improved by
M-Estimation,” Pattern Recognition, vol. 36, pp. 2041-2047, 2003.

[23] G. Blais and M.D. Levine, “Registering Multiview Range Data to
Create 3D Computer Objects,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 17, no. 8, pp. 820-824, Aug. 1995.

[24] P.J. Neugenbauer, “Geometrical Cloning of 3D Objects via
Simultaneous Registration of Multiple Range Images,” Proc. Int’l
Conf. Shape Modeling and Applications, pp. 130-139, 1997.

[25] C. Dorai, G. Wang, A.K. Jain, and C. Mercer, “Registration and
Integration of Multiple Object Views for 3D Model Construction,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 1,
pp- 83-89, Jan. 1998.

[26] M.F. Hansen, M.R. Blas, and R. Larsen, “Mahalanobis Distance
Based Iterative Closest Point,” Proc. SPIE, vol. 6512, p. 65121Y,
Feb. 2007.

[27] P.C. Mahalanobis, “On the Generalized Distance in Statistics,”
Proc. Nat'l Inst. of Science of Calcutta, vol. 2, pp. 49-55, 1936.

[28] D. Chetverikov, D. Stepanov, and P. Krsek, “Robust Euclidean
Alignment of 3D Point Sets: The Trimmed Iterative Closest Point
Algorithm,” Image and Vision Computing, vol. 23, pp. 299-309, 2005.

[29] B.K.P. Horn, “Closed-Form Solution of Absolute Orientation
Using Unit Quaternions,” J. Optical Soc. Am. A, vol. 4, pp. 629-
642, 1987.

[30] AE. Johnson and S.B. Kang, “Registration and Integration of
Textured 3D Data,” Proc. Int’l Conf. Recent Advances in 3D Digital
Imaging and Modeling, pp. 234-241, 1997.

[31] T. Jost and H. Hiigli, “A Multi-Resolution ICP with Heuristic
Closest Point Search for Fast and Robust 3D Registration of Range
Images,” Proc. Fourth Int’l Conf. 3D Digital Imaging and Modeling,
pp. 427-433, 2003.

[32] D. Simon, “Fast and Accurate Shape-Based Registration,” PhD
thesis, Robotics Inst., Carnegie Mellon Univ., Dec. 1996.

[33] G.P.Penney, P.J. Edwards, A.P. King, ].M. Blackall, P.G. Batchelor,
and D.J. Hawkes, “A Stochastic Iterative Closest Point Algorithm
(StochastICP),” Proc. Fourth Int’l Conf. Medical Image Computing and
Computer-Assisted Intervention, pp. 762-769, 2001.

[34] T. Tamaki, M. Abe, B. Raytchev, and K. Kaneda, “Softassign and
EM-ICP on GPU,” Proc. First Int’l Conf. Networking and Computing,
pp. 179-183, 2010.

[35] C. Langis, M. Greenspan, and G. Godin, “The Parallel Iterative
Closest Point Algorithm,” Proc. Third Int’l Conf. 3D Digital Imaging
and Modeling, pp. 195-202, 2001.

[36] B. Combeés and S. Prima, “Prior Affinity Measures on Matches for
ICP-Like Nonlinear Registration of Free-Form Surfaces,” Proc.
IEEE Sixth Int’l Conf. Symp. Biomedical Imaging, pp. 370-373, 2009.



1532

[37] D. Miinch, B. Combes, and S. Prima, “A Modified ICP Algorithm
for Normal-Guided Surface Registration,” Proc. SPIE, vol. 7623,
no. 7, pp. 76231A-1-76231A-8, 2010.

[38] H. Chui and A. Rangarajan, “A New Point Matching Algorithm
for Non-Rigid Registration,” Computer Vision and Image Under-
standing, vol. 89, pp. 114-141, Feb. 2003.

[39] B. Amberg, S. Romdhani, and T. Vetter, “Optimal Step Nonrigid
ICP Algorithms for Surface Registration,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2007.

[40] A. Danilchenko and J. Fitzpatrick, “General Approach to First-
Order Error Prediction in Rigid Point Registration,” IEEE Trans.
Medical Imaging, vol. 30, no. 3, pp. 679-693, Mar. 2011.

[41] L. Maier-Hein, M. Schmidt, A. Franz, T. dos Santos, A. Seitel, B.
Jahne, J. Fitzpatrick, and H. Meinzer, “Accounting for Anisotropic
Noise in Fine Registration of Time-of-Flight Range Data with
High-Resolution Surface Data,” Proc. Medical Image Computing and
Computer Assisted Intervention, pp. 251-258, 2010.

[42] A. Myronenko and X. Song, “Point Set Registration: Coherent
Point Drift,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 32, no. 12, pp. 2262-2275, Dec. 2010.

Lena Maier-Hein received the diploma degree
(Dipl-Inform) in computer science with distinction
from Karlsruhe Institute of Technolgy (KIT) in
2005. Between 2005 and 2008, she worked on
the PhD thesis at the Division of Medical and
Biological Informatics at the German Cancer
Research Center (DKFZ) and received the PhD
(Dr-Ing) degree with distinction in 2009. She
received several scholarships and awards,
including the Waltraud-Lewenz Prize 2008 for
outstanding research at the German Cancer Research Center (DKF2Z)
and the Ingrid-zu-Solms Prize for Natural Sciences 2009/2010. Her
current research interests include the field of computer-assisted medical
interventions.

Alfred M. Franz received the diploma degree in
medical computer science (Dipl-Inform Med)
from the University of Heidelberg in 2012. During
his studies, he was involved in many different
research projects in the Division of Medical and
Biological Informatics at the German Cancer
Research Center (DKFZ) Heidelberg, where he
is currently working toward the PhD degree. His
current research interests include medical image
processing, specifically in the area of diagnosis
and treatment support of physicians.

Thiago R. dos Santos received both the BSc
and MSc degrees in computer science from the
Federal University of Santa Catarina, Floriané-
polis, Brazil, with distinction. Currently, he is a
researcher at the German Cancer Research
Center (DKFZ) and working toward the PhD
degree at the University of Heidelberg. He was
awarded a scholarship for doctoral studies from
the German Academic Exchange Service
(DAAD) in Germany. His current research
interests include medical image processing and shape modeling,
specifically in the areas of surface matching for soft tissue navigation
and intra-operative registration.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 8, AUGUST 2012

Mirko Schmidt received the diploma degree in
physics from the Friedrich-Schiller University,
Jena, Germany, in 2008. From 2008 to 2011, he
was a research associate at the Heidelberg
Collaboratory for Image Processing (HCI) at the
University of Heidelberg. He received the PhD
- degree in physics from Heidelberg University in
i 2011. His research project addresses the field of
- ’ computational photography and 3D Time-of-

Flight depth imaging systems, and is sponsored
by Sony Deutschland GmbH. He is involved in the definition of the
EMVA 1288 Standard for measurements and description of machine
vision cameras.

Markus Fangerau is currently studying compu-
ter science at the Hochschule Mannheim Uni-
versity of Applied Sciences in Germany. He is
working as a research assistant and leads the
Medical Embedded Systems Group in the
Division of Medical and Biological Informatics
of the German Cancer Research Center. His
current research interests are mobile medical
applications, medical imaging, and visualization.
He has extensive experience with compression
algorithms, systems programming, procedural models, and distributed
systems.

re

Hans-Peter Meinzer received the MS degree in
physics and the BS degree in economics from
Karlsruhe University, and received the doctorate
in medical computer science from Heidelberg
University (formal languages, 1983) and a
“habilitation” (cell growth simulation, 1987). He
is the director of the Department of Medical and
Biological Informatics at the German Cancer
Research Center (DKFZ) in Heidelberg and a
professor of medical computer science at
Heldelberg University. He has won several scientific awards, e.g., from
the German Society of Heart Surgery (1992), the German Society of
Pattern Recognition (1993), and the European Commission (1997 and
2003), and has won the European Information Technology Prize twice.

J. Michael Fitzpatrick is a professor emeritus of
electrical engineering and computer science, of
radiology, and of neurosurgery at Vanderbilt
University, Nashville, Tennessee, where he has
served as a member of the faculty since 1982.
His research interests include image guidance
for surgery and image registration. He has more
than 200 publications and holds 16 patents. He
is a fellow of the IEEE and SPIE, coeditor of

% volume two of the SPIE Handbook of Medical
Imaging, and served as the cochair of the Image Processing Conference
for the SPIE Medical Imaging Symposium for 4 years.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



