CMSC 426, Computer Vision Homework 0 - Answer Key

Prof. Yiannis Aloimonos, Jack Rasiel and Kaan Elgin

1. Convolution of two Gaussian produces another Gaussian which is described by the following parameters: $\mu=\mu_{1}+\mu_{2}$ and $\sigma=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}$. That means mean is shifted and the distribution becomes more spread.
2. Yes they can. Consider $u=(2,3), v=(-1,0), w=(2,-6)$. In that case,

$$
\begin{gathered}
u \cdot v=(2,3) \cdot(-1,0)=-2+0=-2<0 \\
v \cdot w=(-1,0) \cdot(2,-6)=-2+0=-2<0 \\
u \cdot w=(2,3) \cdot(2,-6)=4-18=-14<0
\end{gathered}
$$

3. Proof. In that case, sum of the row vectors of $A-c I$ is 0 since it subtracts c from an element in each column. If we add a row to another one, the determinant does not change. So if we add first $n-1$ rows to the $n^{\text {th }}$ row, all elements in the $n^{\text {th }}$ row become 0 . Therefore the determinant becomes 0 and c is an eigenvalue of A since it satisfies the characteristic equation $\operatorname{det}(A-\lambda I)=0$.
4. Proof. If λ is an eigenvalue of A and X is the corresponding eigenvector, we have $A X=\lambda X$. Therefore for any scalar s,

$$
A X-s X=\lambda X-s X \Longrightarrow(A-s I) X=(\lambda-s) X
$$

By the definition of eigenvalue and eigenvector, we can conclude that $\lambda-s$ is an eigenvalue of $A-s I$ for any scalar s and X is the corresponding eigenvector.
5. (a) True. We have $(A B)^{T}=B^{T} A^{T}=B A$. We need to show that A and A^{T} have the same eigenvalues. We know that

$$
\begin{gathered}
(A-\lambda I)^{T}=A^{T}-\lambda I \\
\Longrightarrow \operatorname{det}\left(A^{T}-\lambda I\right)=\operatorname{det}\left((A-\lambda I)^{T}\right)=\operatorname{det}(A-\lambda I)
\end{gathered}
$$

since $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
(b) True. Suppose λ is an eigenvalue for $A B$ with corresponding eigenvector v. So we have $\lambda B v=B \lambda v=B(A B v)=(B A) B v$. Thus λ is also an eigenvalue for $B A$ with the corresponding eigenvector $B v$. (Since B is invertible, $B v$ is not the zero vector unless $v=0$.)
(c) False. Consider $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]$. In that case B is invertible. Eigenvectors of $A B$ are $(-0.7578,0.6525)^{T}$ and $(-0.4031,-0.9151)^{T}$ while eigenvectors of $B A$ are $(-0.8289,0.5593)^{T}$ and $(-0.5949,-0.8038)^{T}$.
6. (a) Yes. If the rows of A are linearly independent, then $\operatorname{det}(A) \neq 0$. In that case A is invertible, so $x=A^{-1} b$ is a solution. Another way to think of this is in such a case $\operatorname{rank}(A)=m$, so column vectors of A span \mathbb{R}^{m}. Since $b \in \mathbb{R}^{m}$, it can be represented by the linear combination of column vectors of A.
(b) No. If $m<n$, there will be infinitely many solutions since there will be free variables.
7. Proof. We have $A v=\lambda v \Longrightarrow v=A^{-1} \lambda v \Longrightarrow v=\lambda A^{-1} v \Longrightarrow \frac{1}{\lambda} v=A^{-1} v$.

