CMSC 426, Computer Vision Homework 0 - Answer Key

Prof. Yiannis Aloimonos, Jack Rasiel and Kaan Elgin

- 1. Convolution of two Gaussian produces another Gaussian which is described by the following parameters: $\mu = \mu_1 + \mu_2$ and $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$. That means mean is shifted and the distribution becomes more spread.
- 2. Yes they can. Consider u = (2, 3), v = (-1, 0), w = (2, -6). In that case,

$$u.v = (2,3).(-1,0) = -2 + 0 = -2 < 0$$
$$v.w = (-1,0).(2,-6) = -2 + 0 = -2 < 0$$
$$u.w = (2,3).(2,-6) = 4 - 18 = -14 < 0$$

- 3. *Proof.* In that case, sum of the row vectors of A cI is 0 since it subtracts c from an element in each column. If we add a row to another one, the determinant does not change. So if we add first n 1 rows to the n^{th} row, all elements in the n^{th} row become 0. Therefore the determinant becomes 0 and c is an eigenvalue of A since it satisfies the characteristic equation $det(A \lambda I) = 0$.
- 4. *Proof.* If λ is an eigenvalue of A and X is the corresponding eigenvector, we have $AX = \lambda X$. Therefore for any scalar s,

$$AX - sX = \lambda X - sX \implies (A - sI)X = (\lambda - s)X.$$

By the definition of eigenvalue and eigenvector, we can conclude that $\lambda - s$ is an eigenvalue of A - sI for any scalar s and X is the corresponding eigenvector.

5. (a) True. We have $(AB)^T = B^T A^T = BA$. We need to show that A and A^T have the same eigenvalues. We know that

$$(A - \lambda I)^T = A^T - \lambda I$$
$$\implies \det(A^T - \lambda I) = \det((A - \lambda I)^T) = \det(A - \lambda I)$$

since $det(A) = det(A^T)$.

(b) True. Suppose λ is an eigenvalue for AB with corresponding eigenvector v. So we have $\lambda Bv = B\lambda v = B(ABv) = (BA)Bv$. Thus λ is also an eigenvalue for BA with the corresponding eigenvector Bv. (Since B is invertible, Bv is not the zero vector unless v = 0.)

- (c) False. Consider $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$. In that case B is invertible. Eigenvectors of AB are $(-0.7578, 0.6525)^T$ and $(-0.4031, -0.9151)^T$ while eigenvectors of BA are $(-0.8289, 0.5593)^T$ and $(-0.5949, -0.8038)^T$.
- 6. (a) Yes. If the rows of A are linearly independent, then $det(A) \neq 0$. In that case A is invertible, so $x = A^{-1}b$ is a solution. Another way to think of this is in such a case rank(A) = m, so column vectors of A span \mathbb{R}^m . Since $b \in \mathbb{R}^m$, it can be represented by the linear combination of column vectors of A.
 - (b) No. If m < n, there will be infinitely many solutions since there will be free variables.
- 7. Proof. We have $Av = \lambda v \implies v = A^{-1}\lambda v \implies v = \lambda A^{-1}v \implies \frac{1}{\lambda}v = A^{-1}v$.