Overview

The following questions relate to the concepts used in Project 2: automated panorama stitching. Understand them, and you’ll better understand how your code works— and more easily debug it when it doesn’t!

Questions

1. **Image warping and invertible transformations**

 Given a digital image, and an invertible transformation \tilde{H} of the form
 \[\tilde{p}' \equiv \tilde{H}\tilde{p} \]

 we would like to compute the warped image whereby each point in the original image is transformed to its new location. This type of image warping is exactly what the Matlab `imwarp` function does, for example.

 We could envision a somewhat straightforward algorithm for performing this image warp: for each location \tilde{p} in the original image, compute the nearest pixel location of the transformed point \tilde{p}' in the warped image, and copy the color found in \tilde{p} into the warped image at location \tilde{p}'.

 However, the vastly preferable algorithm is to loop over the *destination* pixels \tilde{p}' in the warped image, and use the inverse transformation \tilde{H}^{-1} to identify the nearest pixel \tilde{p} in the source image and copy the color from that source pixel to the destination.

 What is the difference between the two approaches? Why is the second one preferable? **30 Pts**

1Borrowed with love from Matt Zucker’s E27 @ Swarthmore.
2. RANSAC

We know that RANSAC is a non-deterministic algorithm, hence knowing some statistics about RANSAC is advantageous. We are mainly concerned about the probability of success of RANSAC.

(a) Consider that the probability of picking a good set of points (we pick 4 points in panorama stitching) is \(p_g \). What is the probability of success after \(N \) iterations? 13.333... Pts

(b) Given that only 50\% of point matches are good, and given 4 points picked to estimate homography: how many iterations are needed to have a 95\% probability of success? \textit{Note!} \(p_g \) is not .5: think carefully what the value of \(p_g \) will be. 13.333... Pts

(c) Given 100 feature points identified in two images, how many possible combinations of 4 point pairs can one pick? By what order of magnitude does performing RANSAC improve over brute-force (i.e. trying all possible 4 point combinations)? 13.333... Pts

3. Homography Estimation

How many points are needed to estimate the homography between 2 images? What does this signify, conceptually? \textit{Hints: Think of this mathematically, by writing the projection equation, or think of it as losing a degree of freedom when adding each constraint.} 30 Pts

Submission Guidelines

Please submit a PDF of your answers. Show all work and explain clearly. \textbf{Answers must be typeset in Latex, Word, LibreOffice, etc.– handwritten answers will not receive credit!}

Collaboration Policy

You are restricted to discuss the ideas with at most two other people. For the full honor code, refer to the CMSC426 Spring 2018 website.