CMSC 426, Computer Vision Homework 2 - Epipolar Geometry Due on: 11:59:59PM on Thursday, April 12th

Prof. Yiannis Aloimonos, Jack Rasiel and Kaan Elgin

April 3, 2018

Questions

1. In a stereo pair of images, corresponding 2 D points x and x^{\prime} that are generated from 3 D coplanar points X that belong to a plane, π, can be related by a homography, $x^{\prime}=H_{\pi} x$. These points can also be related via the fundamental matrix $x^{\prime} F x=0$. Given coordinates of two corresponding pairs of points $\left(x_{1}, x_{1}^{\prime}\right)$ and $\left(x_{2}, x_{2}^{\prime}\right)$, where $x_{1}^{\prime}=H_{\pi_{1}} x_{1}, x_{2}^{\prime}=H_{\pi_{2}} x_{2}, \pi_{1} \neq \pi_{2}$, and given homographies $H_{\pi_{1}}$ and $H_{\pi_{2}}$, write the set of equations that are used to compute F in terms of x_{1}, x_{2}, homographies and F itself. What is the degrees of freedom of F, and why not 9 ? (Note: Degrees of freedom means the number of independent parameters/elements of matrix.)
2. (a) Suppose F is the fundamental matrix of the pair of cameras $\left(P, P^{\prime}\right)$. What is the fundamental matrix for the pair $\left(P^{\prime}, P\right)$.
(b) If for a point x in the first image, the corresponding epipolar line is $F x$, then what is the epipolar line corresponding to x^{\prime} in the second image?
(c) What are the left and right null-spaces of F ? Give reasoning i.e. explain what null space is.
3. Imagine a camera whose projection matrix is defined as

$$
\boldsymbol{M}_{k}=\boldsymbol{K}[\boldsymbol{R} \mid \boldsymbol{t}]
$$

where $\boldsymbol{R}=\left(\begin{array}{lll}r_{1} & r_{2} & r_{3}\end{array}\right)^{T}$ is the rotation matrix, $\boldsymbol{t}=\left(\begin{array}{lll}t_{x} & t_{y} & t_{z}+k\end{array}\right)^{T}$ is the translation vector, and K is the calibration matrix where

$$
\boldsymbol{K}=\left[\begin{array}{ccc}
k f & 0 & 0 \\
0 & k f & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Note that as k increases, we increase both the focal length of the camera, and the Z distance between the camera and some point in the world by the same factor.
Let's consider the projection of some point \boldsymbol{P}.
(a) Express the image coordinates of the point P in homogeneous coordinates i.e. $(u, v, 1)$.
(b) Take the limit of u and v as k goes to infinity, and use L'Hopital's rule to express each limit as simply as possible.
(c) Construct a matrix \boldsymbol{M}_{∞} that has the same effect of \boldsymbol{M}_{k} above, as $k \rightarrow \infty$. That is, we want the matrix to satisfy

$$
\left[\begin{array}{c}
\lim _{k \rightarrow \infty} u \\
\lim _{k \rightarrow \infty} v \\
1
\end{array}\right]=\boldsymbol{M}_{\infty}\left[\begin{array}{c}
\boldsymbol{P} \\
1
\end{array}\right] .
$$

This is called "orthographic projection."

Submission Guidelines

Answer the questions in a pdf file with the naming convention YourDirectoryID_hw2.pdf and submit them ELMS/Canvas. YOU NEED TO TYPESET THE ANSWERS IN IATEXor Word, HANDWRITTEN ANSWERS WILL BE GIVEN ZERO CREDIT! FEEL FREE TO DRAW DIAGRAMS BY HAND IF YOU WANT!

Collaboration Policy

You are restricted to discuss the ideas with at most two other people. But the solutions you turn-in should be your own and if you DO USE (try not it and it is not permitted) other external solutions/solutions from other students - do cite them. For other honor code refer to the CMSC426 Spring 2018 website.

