
CMSC 426, Computer Vision
Project 2: Panorama!

Prof. Yiannis Aloimonos,
Jack Rasiel and Kaan Elgin

February 28, 2018

The aim of this project is to implement an end-to-end pipeline for panorama stitching.
We all use the panorama mode on our smart-phones– you’ll implement a pipeline which does
the same basic thing. Aren’t you excited?

In the next few sections, we’ll detail how this has to be done along with the specifications
of the functions for each part.

1 Due Dates

As with Project 1, this project is divided into two milestones:

• MILESTONE 1 DUE DATE: 11:59:59PM on Thursday, March 01 2018

– Corner detection, ANMS, feature descriptors, and feature matching.

• MILESTONE 2 DUE DATE: 11:59:59PM on Thursday, March 08 2018

– The rest of the pipeline: RANSAC, cylinder projection, warping and blending.
To be clear, cylinder projection is part of Milestone 2.

– Note that much of the extra credit opportunities are in these parts of the project.

Reaching both milestones on time earns 10 points of extra credit. There is no
late penalty for missing the milestones. They are intended to encourage timely completion
of the projects: each milestone should be roughly the same amount of work, based on our
estimates.

Each milestone will be submitted separately on ELMS; for the full submission guidelines
see section 13.

2 System Overview

A system diagram is given on the following page, with short descriptions of each step on the
page after that:

1



ANMS

Refine Match (RANSAC),
Estimate Homography

(result)

Warping and Blending

Feature DescriptorsDetect Corners

Match Features

Cylinder Projection
(optional, not shown here)

Input Images



2.1 System Overview

A brief description of the panorama stitching pipeline:

• Cylinder Projection: Project images onto a cylinder, to reduce distortion at the
panorama’s edges.

• Detect Corners: identify corner points in your images. For this project, it’s just a
function call.

• ANMS: pick out the stronger corner points.

• Feature Descriptors: create descriptors for the corner points, so they can be matched
between images (in the next step).

• Feature Matching: Match feature descriptors from different images, to find possible
point correspondences.

• RANSAC and Homography Estimation: refine the feature point matches, and
use the correspondences to estimate homographies between images.

• Image Warping and Blending Use the estimated homographies to warp the images
onto one another, and apply blending to reduce the appearance of seams where they
fit together.

3 Capture Images

For this project, you need to capture multiple images of a scene, which you will use to stitch a
panorama from. In general, you should limit your camera motion to pure translation, or pure
rotation (around the camera center). Make sure you have about 30-50% overlap between
consecutive images to have enough common features to be able to stitch panoramas.

We might give bonus points for interesting image selections!

4 Adaptive Non-maximal Suppression (ANMS) to find

corners distributed equally over the image - 25Pts

The aim of this step is to detect strong corners, spread widely across the image. Initially,
we’ll detect corner features using Matlab’s cornermetric. The output is a matrix of corner
scores: the higher the score, the higher the probability of that pixel being a corner. Visualize
the output using the Matlab function imagesc.

We want to find particularly strong corners, spread across many different parts of the image.
Find the Nstrong strongest corners using the Matlab function imregionalmax. The ANMS
algorithm is described next:

Consider the case where we are stitching first 2 images shown in the system diagram.
The output of ANMS is shown in Fig. 1. To plot dots on the images: imshow(..); hold

3



Input : Corner score Image (Cimg obtained using cornermetric), Nbest (Number of
best corners needed)

Output: (xi, yi) for i = 1 : Nbest

Find all local maxima using imregionalmax on Cimg;
Find (x, y) co-ordinates of all local maxima;
((x, y) for a local maxima are inverted row and column indices i.e., If we have local
maxima at [i, j] then x = j and y = i for that local maxima);

Initialize ri =∞ for i = [1 : Nstrong]

for i = [1 : Nstrong] do
for j = [1 : Nstrong] do

if (Cimg(yj, xj) > Cimg(yi, xi)) then
ED = (xj − xi)

2 + (yj − yi)
2

end
if ED < ri then

ri = ED
end

end

end

Sort ri in descending order and pick top Nbest points

Algorithm 1: ANMS algorithm.

on; plot(..); hold off;. Note that plot uses x and y where x is the column number and
y is the row number.

Figure 1: Output of ANMS on the sample images.

4



5 Feature Descriptor - 25Pts

In the previous step, you found the feature points (i.e., the locations of the Nbest best corners
after ANMS). You need to generate a descriptor for each feature point. This is much like
how we generated Textons in project 1: each of the filters encoded different information
about the texture surrounding a pixel. The information we’ll encode here is a bit simpler:

Take a patch of size 40 × 40 centered (this is very important) around the keypoint. Apply
gaussian blur (feel free to play around with the parameters, for a start you can use Matlab’s
default parameters in fspecial command. Yes! you are allowed to use fspecial in this
project! ). Now, sub-sample the blurred output to 8 × 8 (this reduces the dimensionality of
the descriptor; in practice the gain in computational efficiency outweighs the information
loss). Then reshape to obtain a 64 × 1 vector. Standardize the vector to have zero mean
and variance of 1 (i.e., subtract all values by mean and then dividing by the standard
deviation). Standardization makes the descriptor more robust to variations in appearance
between images.

6 Feature Matching - 10Pts

In the previous step, you represented each feature point as a 64 × 1 feature vector. Now,
we’d like to identify matching points in different images. In Vision lingo, we call this finding
”feature correspondences” between the 2 images.

We’ll quantify the similarity between two feature descriptors with a simple sum of squared
differences on their pixels. For each point in image 1, compute the sum of square differences
between with all points in image 2. Take the ratio of the best match (lowest distance)
to the second best match (second lowest distance)– if this is above some ratio, keep the
match. Repeat for all points in image 1. This process yields a set of points correspondences,
with which we will now estimate the transformation between the two images (AKA the
homography).

Use the function showMatchedFeatures provided to visualize feature correspondences
(Sample output is shown in Fig. 2).

5



Figure 2: Output of showMatchedFeatures on first 2 images.

7 RANSAC to estimate robust Homography - 15Pts

Not all the matches we found in the previous step will be useful. To help separate good
matches from bad, we use the RANSAC algorithm.

Recall the RANSAC steps are:

• Select four feature pairs (at random), pi , p1i .

• Compute homography H (exact). Use the function est homography given to you.

• Compute inliers where SSD(p1i , Hpi) < thresh. Here, Hpi computed using the apply homography

function given to you.

• Repeat the last three steps until you have exhausted Nmax number of iterations (spec-
ified by user) or you found more than a percentage of inliers (say 90% for example).

• Keep largest set of inliers.

• Re-compute least-squares Ĥ estimate on all of the inliers. Use the function est homography

given to you.

8 Warping Images Together - 5 Points

Produce a panorama by overlaying the pairwise aligned images to create the final output
image. The following Matlab functions should help you in this part, e.g imtransform and
imwarp. If you want to implement imwarp (or similar function) by yourself, you should apply
bilinear interpolation when you copy pixel values. The panorama output obtained for Fig.
?? is shown in Fig. 3.

6



Figure 3: Final Panorama output.

9 Cylindrical Projection

The pipeline, as implemented so far, doesn’t work well for very wide panoramas. When you
try to stitch a lot of images with translation, a simple projective transformation (applying
homography) the images will be stretched or shrunken too much at the edges. A sample
case is shown in Fig. 4.

To overcome these distortion problems, we will add a cylindrical projection step to the
start of the pipeline. For an intuition of what we are doing, and the problem we’re solving,
see the relevant link in the Resources section.

The following equations transform from normal image co-ordinates to cylindrical co-
ordinates.

x′ = f tan

(
x− xc

f

)
+ xc

7



y′ =

 y − yc

cos

(
x− xc

f

)
+ yc

In the above equations, f is the focal length of the lens in pixels (feel free to experiment
with values, generally values range from 100 to 500, however this totally depends on the
camera and can lie outside this range). The original image co-ordinates are (x, y) and the
transformed image co-ordinates (in cylindrical co-ordinates) are (x′, y′). xc and yc are the
image center co-ordinates. Note that, x is the column number and y is the row number in
Matlab.

You can use meshgrid, ind2sub, sub2ind to speed up this part. Using loops will
TAKE FOREVER!

A sample input image and it’s cylindrical projection output is shown in Fig. 5.
Note that, the above equations talk about pixel co-ordinates are not pixel values. The

idea is you compute the co-ordinate transformation and copy paste pixel values to these
new pixel co-ordinates (in all 3 channels, i.e., RGB). However, when you compute the values
of (x′, y′) they might not be integers. A simple way to get around this is to use round or
actually interpolate the values. If you decide to round the co-ordinates off you might be left
with black pixels, fill them using some weighted combination of it’s neighbours (gaussian
works best). A trivial way to do this is to blur the image and copy paste pixel values on-to
original image where there were pure black pixels. (You can also initialize pixels to NaN’s
instead of zeros to avoid removing actual zero pixels).

Figure 4: Panorama stitched using projective transform showing bad distortion at edges.

8



Figure 5: Left: Original input image, Right: Cylindrical output image.

10 Image Blending - 15 Pts

Variations in lighting (and other factors) between images can cause unsightly seams in the
resulting panorama. To reduce the appearance of seams, overlapping images should ”fade”
into one another, rather than having a simple overlap. You CAN NOT use any built-in
Matlab function or third party code to do this.

For some hints on how to do this, see slides 29 through 31 of the Stanford slide deck
linked in the Helpful Resources section.15Pts

11 Extra Credit

• Interesting selection of images. (5Pts)

• Use 8 or more images for stitching. (5Pts)

• Achieve rotation invariance (for feature matching) in the feature descriptor. Hint: Use
dominant direction of image patch around the keypoints. (10Pts).

12 Starter Code

Put the code which executes your pipeline in Code/MyPanorama.m. DO NOT mod-
ify the function definition. When run, this function must load a set of images from
Images/input/, and return the resulting panorama. Feel free to put other functions in
external files– but make sure you include them in your submission!

9



13 Submission Guidelines

If your submission does not comply with the following guidelines, you’ll be given
ZERO credit:

13.1 File tree and naming

Your submission on Canvas must be a zip file, following the naming convention “YourDirec-
toryID proj2 milestone#.zip”. For example, jrasiel proj2 milestone1.zip (for milestone
1). The file must have the following directory structure, based on the starter files:

YourDirectoryID proj2 milestone#.zip

Code/

MyPanorama.m

(Any dependencies of MyPanorama.m)

Images/

CustomSet1 - Your images here!

CustomSet2 - Your images here!

Set1 - These are the provided images.

Set2

Set3

input

report.pdf - Your report.

When run, MyPanorama.m must load a set of images from Images/input/, and return
the resulting panorama.

13.2 Report

You will be graded primarily based on your report. We want you to demonstrate an
understanding of the concepts involved in the project, and to show the output produced by
your code.

Include visualizations of the output of each stage in your pipeline (as shown in the system
diagram on page 2), and a description of what you did for each step, including any problems
you encountered and/or interesting solutions you implemented. Your report must be full
English sentences, not commented code.

Be sure to include the output panoramas for all five image sets.
A reminder: Every student should present AT LEAST once in the class (you

can volunteer to present for more than one project) and can choose to do for
any of the projects.

14 Allowed Matlab functions

imfilter, conv2, imrotate, im2double, rgb2gray, fspecial, imtransform, imwarp,

meshgrid, sub2ind, ind2sub and all other plotting and matrix operation/manipulation

10



functions are allowed.

15 Helpful Resources

• Cylinder Projection - visualization and helpful explanation from the Stanford computer
graphics department.

• hrefhttp://pages.cs.wisc.edu/ dyer/cs534/slides/08-mosaics.pdfExcellent slides on panorama
stitching, from CS534 at U Wisconsin Madison.

• A good selection on RANSAC from the Hartley and Zisserman textbook was dis-
tributed on 02-22; if you did not receive it, please contact the TAs.

16 Collaboration Policy

You are restricted to discuss the ideas with at most two other people. But the code you turn-
in should be your own, and should be the result of you exercising your own understanding
of it. If you reference anyone else’s code in writing your project, you must properly cite it in
your code (in comments) and your writeup. For the full honor code refer to the CMSC426
Spring 2018 website.

DON’T FORGET TO HAVE FUN AND PLAY AROUND WITH IMAGES!

Acknowledgements

This fun project was inspired from ‘Computer Vision & Computational Photography’ (CIS
581) course of University of Pennsylvania (https://alliance.seas.upenn.edu/~cis581/
wiki/index.php?title=CIS_581:_Computer_Vision_%26_Computational_Photography).

11

https://graphics.stanford.edu/courses/cs178/applets/projection.html
https://alliance.seas.upenn.edu/~cis581/wiki/index.php?title=CIS_581:_Computer_Vision_%26_Computational_Photography
https://alliance.seas.upenn.edu/~cis581/wiki/index.php?title=CIS_581:_Computer_Vision_%26_Computational_Photography

	Due Dates
	System Overview
	System Overview

	Capture Images
	Adaptive Non-maximal Suppression (ANMS) to find corners distributed equally over the image - 25Pts
	Feature Descriptor - 25Pts
	Feature Matching - 10Pts
	RANSAC to estimate robust Homography - 15Pts
	Warping Images Together - 5 Points
	Cylindrical Projection
	Image Blending - 15 Pts
	Extra Credit
	Starter Code
	Submission Guidelines
	File tree and naming
	Report

	Allowed Matlab functions
	Helpful Resources
	Collaboration Policy

