
CMSC 426, Computer Vision
Project 4: Camera Calibration and Epipolar Geometry

Prof. Yiannis Aloimonos,
Jack Rasiel and Kaan Elgin

April 10, 2018

1 Due Dates

This project is not divided into milestones.

• DUE DATE: 11:59:59PM on Tuesday, March 24 2018

2 Introduction

This project focuses on on some foundational concepts and techniques for relating points in
an image with points in the world. Specifically, you’ll estimate the camera projection matrix
(mapping points in the world to points in the image), and the fundamental matrix (mapping
between points and lines in two images of the same scene).

The aim of this project is to build a rigorous understanding of the concepts involved, as
well as introduce some practical techniques for using them.

This project has two parts:

• Camera Calibration from 2D-3D point correspondences in images.

• Fundamental Matrix Estimation (with RANSAC for refinement)

More details are given below. Note that these concepts were introduced in class, and not
all details are repeated here. Please see the course slides for reference, or some of the other
resources linked in the ”Helpful Resources” section.

3 Camera Calibration: Estimating the Projection Ma-

trix (34 pts)

The projection matrix maps the 3D coordinates in the world to 2D coordinates in the image.
We can estimate it given a set of points in an image, and their corresponding 3D points
in the world. Using homogeneous coordinates, we map from a point (X, Y, Z) in world
coordinates, to (u, v, 1) in image coordinates, via the projection matrix M:

1

u
v
1

 ∼=
u ∗ s
v ∗ s
s

 =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34



X
Y
Z
1


Your first task is to estimate the elements of M. This can be accomplished by solving a

constrained optimization via least squares. The problem can be stated as follows:

min ‖Ax‖

s.t ‖x‖ = 1

(Note, we’ll discuss the x = 1 constraint later.) Where m are the elements of M, and A is
the set of observations (point correspondences). Each point correspondence is represented by
two rows in A, one for u and one for v. We can find the format of these rows by manipulating
formula 1 as follows:

u = m11X+m12Y+m13Z+m14

m31X+m32Y+m33Z+m34

→ (m31X + m32Y + m33Z + m34)u = m11X + m12Y + m13Z + m14

→ 0 = m11X + m12Y + m13Z + m14 −m31uX −m32uY −m33uZ −m34u

v = m21X+m22Y+m23Z+m24

m31X+m32Y+m33Z+m34

→ (m31X + m32Y + m33Z + m34)v = m21X + m22Y + m23Z + m24

→ (m31X + m32Y + m33Z + m34)v = m21X + m22Y + m23Z + m24

→ 0 = m21X + m22Y + m23Z + m24 −m31vX −m32vY −m33vZ −m34v

Because the projection matrix M is only defined up to scale, the above equations can
have many solutions– including just setting all the elements of M to zero, which wouldn’t be
very helpful! To avoid this, you can set the last element m34 to 1 and solve for the remaining
coefficients, or leave m34 free but impose the constraint ||x|| = 1 when solving.

3.1 What you need to do:

We’ve provided starter code to load a set of point correspondences. You need to set up the
system of equations, solve for M, and reshape the results into the proper 3x4 matrix format.
To test your code, we’ve included a set of corresponding 2D and 3D points. Given those
points, your code should produce a matrix that is a scaled equivalent of the following:

M =

−0.4583 0.2947 0.0139 −0.0040
0.0509 0.0546 0.5410 0.0524
−0.1090 −0.1784 0.0443 −0.5968


2

To validate that you’ve found a reasonable projection matrix, we’ve provided evaluation
code which computes the total ”residual” between the projected 2d location of each 3d point
and the actual location of that point in the 2d image. The residual is just the distance
(square root of the sum of squared differences in u and v). This should be very small.

4 Estimating the Fundamental Matrix (33pts)

Given two different images of the same scene, the fundamental matrix maps points in one
image to lines in the other. This is the relationship illustrated by the familiar epipolar
diagram:

Figure 1: Two images of the same point P. The point p in camera 1 maps to the line e′p′ in
camera 2, and p′ to ep. Source.

3

https://web.stanford.edu/class/cs231a/course_notes/03-epipolar-geometry.pdf

We’re going to estimate the fundamental matrix for a pair of images, using a set of
corresponding points between them. To start, let’s recall the definition of the fundamental
matrix: 1

(
u′ v′ 1

)f11 f12 f13
f21 f22 f23
f31 f32 f33

u
v
1

 = 0

This can simplified as follows:

(
u′ v′ 1

)f11u + f12v + f13
f21u + f22v + f23
f31u + f32v + f33

 = 0

(
f11uu

′ + f12vu
′ + f13u

′ + f21uv
′ + f22vv

′ + f23v
′ + f31u + f32v + f33

)
= 0

As when we estimated the projection matrix in part 1, we can use multiple such equations
to set up a linear system and solve for the elements of the matrix F. How many equations
do we need? If we want to solve directly for all nine elements of F, we need nine equations
to constrain them. However, as with the projection matrix, the fundamental matrix is only
defined up to scale, and we need to avoid the unhelpful solution of setting that scalar to zero
(and thus making all the elements of F zero). So, we fix the scale as in part 1. Thus we need
at least eight equations (meaning, eight point correspondences).

If estimating F via least squares, the solution found may have full rank. However, we
know that the fundamental matrix has rank 2. We should reduce the rank of our estimate
to 2. To do this, we can decompose F using singular value decomposition into the matrices
UΣV ′ = F . We can then estimate a rank 2 matrix by setting the smallest singular value in Σ
to zero thus generating Σ2. The fundamental matrix is then easily calculated as F = UΣ2V

′.
We can check our fundamental matrix estimation by plotting the epipolar lines using the

plotting function provided in the starter code.

4.1 What you need to do:

Fill in the template estimate fundamental matrix.m, adding code to estimate the funda-
mental matrix given point correspondences.

1Our code assumes you use the formula given here. However it is also valid to defined the fundamental
matrix as the transpose of this matrix, with the points (u,v,1), (u,’v’,1) swapped.

4

5 Refining the Fundamental Matrix Estimate with RANSAC

(33 pts)

In project 2, we matched feature points between images using a sum-squared-difference
metric. This produced a lot of incorrect matches, so we used RANSAC to separate good
matches from bad. We’ll take a similar approach to find a set of good matches for computing
the fundamental matrix.

5.1 What you need to do:

Find and match feature points in a given image pair (for example, using detectSurfFeatures

and matchFeatures). Fill in the template for ransac fundamental matrix with your RANSAC
code. This should be similar to the RANSAC you implemented for project 2. Instead of es-
timating a homography, we’re estimating a fundamental matrix. To count how many inliers
a fundamental matrix has, you will need a distance metric based on the fundamental ma-
trix. (Hint: For a point correspondence (x’,x) what properties does the fundamental matrix
have?).

To visualize your results, we have provided a function draw epipolar lines which draws an
epipolar line in an image, given the fundamental matrix and a point from the other image.
You can test how good your estimate of the fundamental matrix is by drawing the epipolar
lines on one image which correspond to a point in the other image. You should see all of the
epipolar lines crossing through the corresponding point in the other image, like this:

Figure 2: A very accurate fundamental matrix maps each keypoint in one image to a line
in the other, which perfectly intersects the corresponding keypoint in that image. Source:
lecture slides

For some real images, the fundamental matrix that is estimated may imply an impossi-
ble relationship between the cameras, e.g., an epipole in the center of one image when the

5

cameras actually have a large translation parallel to the image plane. The estimated funda-
mental matrix may also be incorrect because the world points are coplanar, or because the
cameras are not actually pinhole cameras and have lens distortions. Still, these ”incorrect”
fundamental matrices tend to remove incorrect feature matches (and, unfortunately, many
correct ones too).

6 Extra Credit: Camera Calibration with a Chess-

board (20pts)

What if we want to calibrate our camera, but don’t already have 2D-3D point correspon-
dences? One approach is to calibrate using an object of known size and pattern, whose 3D
position we can determine from its appearance in the image (such an object is known as a
”fiducial marker”). The most common calibration pattern is a rectangular ”chessboard”:

Figure 3: source

It’s easy to locate the chessboard’s clearly-defined corners in the image. Since the chess-
board’s pattern is also known, we can determine its position and orientation relative to

6

https://www.mathworks.com/help/vision/ref/detectcheckerboardpoints.html

the camera. (Note that this position is only known up to a scale factor, unless we give the
length (in mm/inches/etc) of one of the chessboard’s squares.) We can then use these 2D-3D
correspondences to calibrate our camera.

Since this is a common procedure for computer vision researchers, we’d like you to do
it yourself, with your own camera and chessboard! You are encouraged to use the camera
calibrator app from MATLAB’s CV toolbox– it provides functionality for the tasks described
below.

6.1 What you need to do:

Print out a chessboard of your own and collect some images. Use those images to estimate
your intrinsics and extrinsics. In your report, you should include:

• a few of the images you used for calibration.

• Your estimated intrinsics and extrinsics.

• A visualization of the camera extrinsics.

• A visualization of the reprojection error for a few checkerboard images.

• The reprojection error bar graph.

• Answer: based on the reprojection error, do you think your calibration needs improve-
ment?

• If there are outliers among your calibration images, remove them, and show how it
affected the reprojection error (both in a few images and in the bar graph).

7

https://www.mathworks.com/help/vision/ug/single-camera-calibrator-app.html
https://www.mathworks.com/help/vision/ug/single-camera-calibrator-app.html

7 Submission Guidelines

If your submission does not comply with the following guidelines, you’ll be given
ZERO credit:

7.1 File tree and naming

Your submission on Canvas must be a zip file, following the naming convention “YourDi-
rectoryID proj4.zip”. For example, jrasiel proj4.zip. The file must have the following
directory structure, based on the starter files:

YourDirectoryID proj4.zip

code/

proj3 part1.m

proj3 part2.m

proj3 part3.m

calculate projection matrix.m

draw epipolar lines.m

estimate fundamental matrix.m

ransac fundamental matrix.m

(utility scripts that you don’t need to modify:)

evaluate points.m

plot3dview.m

show correspondence2.m

show correspondence.m

visualize points.m

report.pdf - Your report.

7.2 Running your code

We expect your code to function as per the templates provided. Please do not modify the
definitions of these functions. If you write code in external .m files, please include them in
the code/ directory.

7.3 Report:

For each section of the project, explain briefly what you did, and describe any interesting
problems you encountered and/or solutions you implemented. You must include the following
details in your writeup:

• Your estimate of the projection matrix.

• Your estimate of the fundamental matrix for the base image pair (pic a.jpg and pic b.jpg).

• Several different images with the epipolar lines drawn on them and with the inlier
keypoint correspondences shown. At least one of these pairs should be ”correct” for
full credit.

8

As usual, your report must be full English sentences, not commented code.

A reminder: Every student should present AT LEAST once in the class (you
can volunteer to present for more than one project) and can choose to do for any of the
projects.

8 Forbidden MATLAB Functions:

You may not use the constrained least squares version of the MATLAB lsqlin() function.
You may also not using any tools from the MATLAB computer vision toolbox for RANSAC
or for estimating the fundamental matrix.

9 Useful MATLAB Functions:

• svd(). This function returns the singular value decomposition of a matrix. Useful
for solving the linear systems of equations you build and reducing the rank of the
fundamental matrix.

• inv(). This function returns the inverse of a matrix.

• randsample(). Lets you pick integers from a range. Useful for RANSAC.

• For the initial feature detection and matching before RANSAC, we recommend detectSURFFeatures

and matchFeatures.

10 Helpful Resources:

• Stanford course notes on epipolar geometry.

• Oxford course notes on epipolar geometry.

• And of course, the course lecture slides!

11 Acknowledgements

This project is based on a project from James Tompkin’s CS143 at Brown, which itself was
based on a project from Aaron Bobick’s offering of CS 4495 at GATech.

12 Collaboration Policy

You are restricted to discuss the ideas with at most two other people. But the code you turn-
in should be your own, and should be the result of you exercising your own understanding
of it. If you reference anyone else’s code in writing your project, you must properly cite it in

9

https://web.stanford.edu/class/cs231a/course_notes/03-epipolar-geometry.pdf
https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1/HZepipolar.pdf

your code (in comments) and your writeup. For the full honor code refer to the CMSC426
Spring 2018 website.

DON’T FORGET TO HAVE FUN AND PLAY AROUND WITH IMAGES!

10

	Due Dates
	Introduction
	Camera Calibration: Estimating the Projection Matrix (34 pts)
	What you need to do:

	Estimating the Fundamental Matrix (33pts)
	What you need to do:

	Refining the Fundamental Matrix Estimate with RANSAC (33 pts)
	What you need to do:

	Extra Credit: Camera Calibration with a Chessboard (20pts)
	What you need to do:

	Submission Guidelines
	File tree and naming
	Running your code
	Report:

	Forbidden MATLAB Functions:
	Useful MATLAB Functions:
	Helpful Resources:
	Acknowledgements
	Collaboration Policy

