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Reminder from first lecture

• Computer Vision is an inverse Problem
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• What general (prior) knowledge of the world 
(not necessarily visual) can be exploit?

• What properties / cues from the image can be used?

2D pixel representation

3D Rich Representation, 

Computer Graphics

Computer Vision

Script = {Camera, Light, Geometry, 
Material, Objects, Scene,  
Attributes, Others}



Reminder: Sparse versus Dense Matching: Tasks and Applications
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Tasks:
• Find places where we could match features 

(points, lines, regions, etc)
• Extract appearance - features descriptors
• Find all possible (putative) appearance 

matches between images
• Verify with geometry

For what applications is sparse matching enough:
• Sparse 3D reconstruction of a rigid scene
• Panoramic stitching of a rotating / translating  

camera 
• Augemted Reality / Video



Reminder: Sparse versus Dense Matching
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3D view interpolation

Kinect RGB and Depth data input
Dense flow: 
frame 1->2

Dense flow: 
frame 2->1

Flow encoding



Reminder: Using multiple Images: Define Challenges

A road map for the next five lectures

• L4: Geometry of a Single Camera
and Image Formation Process

• L5: Sparse Matching two images: Appearance

• L6: Sparse Matching two images: Geometry

• L7: Sparse Reconstructing the world (Geometry of n-views)

• L8: Dense Geometry estimation 
(stereo, flow and scene flow, registration)
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Roadmap this lecture (image formation process)

• Geometric primitives and transformations (sec. 2.1.1-2.1.4)

• Geometric image formation process (sec. 2.1.5, 2.1.6)

• Pinhole camera

• Lens effects

• The Human eye 

• Photometric image formation process (sec. 2.2)

• Camera Types and Hardware (sec 2.3) 
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Roadmap this lecture (image formation process)

• Geometric primitives and transformations (sec. 2.1.1-2.1.4)

• Geometric image formation process (sec. 2.1.5, 2.1.6)

• Pinhole camera

• Lens effects

• The Human eye 

• Photometric image formation process (sec. 2.2)

• Camera Types and Hardware (sec 2.3) 
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Some Basics

• Real coordinate space 𝑅2 example: 1
2

• Real coordinate space 𝑅3 example:
1
2

3

• Euclidean Space 𝑅3 where angles and length are defined. 
Operations we need are 

scalar product:

𝒙 𝒚 = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3 where x = 
𝑥1
𝑥2
𝑥3

cross/vector product:
𝒙 × 𝒚 = 𝒙 × 𝒚
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𝒙 × =   

0 −𝑥3 𝑥2
𝑥3 0 −𝑥1
−𝑥2 𝑥1 0



Euclidean Space

• Euclidean Space 𝑅2 or 𝑅3 has angles and distances defined 
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= 𝑥 𝑥

Angle defined as:

Θ

𝑥

𝑦

𝑥 − 𝑦

𝑜𝑟𝑖𝑔𝑖𝑛

Length of the vector 𝑥



Projective Space

• 2D Point in a real coordinate space: 
1
2

∈ 𝑅2 has 2 DoF (degrees of freedom) 

• 2D Point in a real coordinate space: 
1
2
3

∈ 𝑅3 has 3 DoF

• Definition:  A point in 2-dimensional projective space 𝑃2 is defined as

𝑝 =
𝑥
𝑦
𝑤

∈ 𝑃2, such that all vectors 
𝑘𝑥
𝑘𝑦
𝑘𝑤

∀ 𝑘 ≠ 0

define the same point 𝑝 in 𝑃2 (equivalent classes)

• Writing: sometimes 
1
2
1

~
2
4
2

; we write 
1
2
1

=
2
4
2
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Projective Space - visualization

A point in 𝑃2 is a ray in 𝑅3 that goes through the origin:
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All rays go through (0,0,0) 
define a point in 𝑃2

Plane w=0 

Plane w=1 

w-axis
𝑥
𝑦
𝑤

𝑥
𝑦
0

Definition:  A point in 2-dimensional projective space 𝑃2 is defined as

𝑝 =
𝑥
𝑦
𝑤

∈ 𝑃2, such that all vectors 
𝑘𝑥
𝑘𝑦
𝑘𝑤

∀ 𝑘 ≠ 0

define the same point 𝑝 in 𝑃2 (equivalent classes)



Projective Space
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• All points in 𝑃2 are given by: 𝑅3 \
0
0
0

• A point 
𝑥
𝑦
𝑤

∈ 𝑃2 has 2 DoF (3 elements but norm of vector can be set to 1)

All rays go through (0,0,0) 
define a point in 𝑃2

Plane w=0 

Plane w=1 

w-axis
𝑥
𝑦
𝑤

𝑥
𝑦
0



Real Coordinate Space versus Projective Space

Real coordinate space 𝑅2/𝑅3
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Projective space 𝑃2/ 𝑃3

Primitives:
• Points
• Lines
• Conics (Quadric in 3D)
• (Planes in 3D)

Transformations:
• Rotation
• Translation
• projective
• ….

Operations with 
Primitives:

• intersection
• tangent

Primitives:
• Points
• Lines
• Conics (Quadric in 3D)
• (Planes in 3D)

Transformations:
• Rotation
• Translation
• projective
• ….

Operations with 
Primitives:

• intersection
• tangent



From 𝑅2 to 𝑃2 and back
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𝑥
𝑦
𝑤

∈ 𝑃2
𝑥/𝑤

𝑦/𝑤
∈ 𝑅^2

𝑓𝑜𝑟 𝑤 ≠ 0

𝑝 =
𝑥

𝑦
∈ 𝑅2 𝑝 =

𝑥
𝑦
1

∈ 𝑃2

• From 𝑅2 to 𝑃2: 

• From 𝑃2 to 𝑅2: 

- a point in inhomogeneous coordinates
- we soemtimes write 𝑝 for inhomogeneous 
coordinates

- a point in homogeneous coordinates
~

what does it mean if w=0? 

We can do this transformation with all primitives



From 𝑅2 to 𝑃2 and back: Example

13/11/2013Computer Vision I: Image Formation Process 16

𝑝 =
𝑥

𝑦
∈ 𝑅2 𝑝 =

𝑥
𝑦
1

∈ 𝑃2

• From 𝑅2 to 𝑃2: 

- a point in inhomogeneous coordinates - a point in homogeneous coordinates

𝑝 =
3

2
∈ 𝑅2 𝑝 =

3
2
1

=
4.5
3
1.5

=
6
4
2

∈ 𝑃2 𝑝 =
6/2

2/2
∈ 𝑅2

(6,4,2) 

Plane w=0 

Plane w=1 (Space 𝑹𝟐) 

w-axis

(3,2,1) 



Why bother about 𝑃2

• All Primitives, operations and transformations are defined in 𝑅2

and 𝑃2

• Advantage of 𝑃2:

• Many transformation and operations are written more 
compactly (e.g. linear transformations)

• We will introduce new special “primitives” that are useful 
when dealing with “parallelism”     
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Two parallel lines in 𝑅2

In 𝑃2 they meet in a „point at inifinty“Example will come later



Points at infinity
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Points with coordinate 
𝑥
𝑦
0

are ideal points or points at infinity

All rays go through (0,0,0) 
define a point in P^2 

Plane w=0 

Plane w=1 

w-axis

𝑥
𝑦
0

∈ 𝑃2 Not defined in 𝑅2 𝑠𝑖𝑛𝑐𝑒 𝑤 = 0

𝑥
𝑦
0

𝑥
𝑦
𝑤



Lines in 𝑅2

• For Lines in coordinate space 𝑅2 we can write

𝑙 = (𝑛𝑥, 𝑛𝑦, 𝑑) with 𝑛 = 𝑛𝑥, 𝑛𝑦
𝑡

is normal vector and ||𝑛|| = 1

• A line has 2 DoF

• A point (𝑥, 𝑦) lies on l if:

𝑛𝑥 𝑥 + 𝑛𝑦 𝑦 + 𝑑 = 0

• Normal can also be encoded 

with an angle 𝜃:
𝑛 = cos 𝜃 , sin 𝜃 𝑡
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Lines in 𝑃2

• Points in 𝑃2: 𝒙 = (𝑥, 𝑦, 𝑤)

• Lines in 𝑃2: 𝒍 = (𝑎, 𝑏, 𝑐)

(again equivalent class: 𝑎, 𝑏, 𝑐 = 𝑘𝑎, 𝑘𝑏, 𝑘𝑐 ∀ 𝑘 ≠ 0 )

Hence also 2 DoF

• All points 𝑥, 𝑦, 𝑤 on the line (𝑎, 𝑏, 𝑐) satisfy:   𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0
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this is the equation of a plane in 𝑅3 with 
normal (a,b,c) going through (0,0,0) 



Line at Infininty 
• There is a “special” line, called line at infinity: (0,0,1)

• All points at infinity (x,y,0) lie on the line at infinity (0,0,1):

x*0 + y*0 + 0*1 = 0
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Plane w=0 

Plane w=1 

w-axis

𝑥
𝑦
0

A point at infinity (w=0) 

0
0
1

vector for line at infinity



A Line defined by two points in 𝑃2

• The line through two points 𝒙 and 𝒙′ is  given as: 𝒍 = 𝒙 × 𝒙’

• Proof:

𝒙 𝒙 × 𝒙’ = 𝒙′ 𝒙 × 𝒙′ = 𝟎
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vectors are 
orthogonal

𝒙 𝒍 = 𝒙′𝒍 = 𝟎

The line 𝒍 goes through points 𝒙 and 𝒙′

𝒙

𝒙′



The Intersection of two lines in 𝑃2

• Intersection of two lines 𝒍 and 𝒍’ is the point 𝒙 = 𝒍 × 𝒍’

• Proof:

𝒍 𝒍 × 𝒍’ = 𝒍′ 𝒍 × 𝒍’ = 𝟎
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vectors are 
orthogonal

𝒍𝒙 = 𝒍′𝒙 = 𝟎

The point 𝒙 lies on the lines 𝒍 and 𝒍′

Note the „Theorem“ and Proofs have been very similiar, we only 
interchanged points and lines



Duality of points and lines

• Note 𝒍𝒙 = 𝒙𝒍 = 𝟎 (𝒙 and 𝒍 are “interchangeable”)

• Duality theorem: Two any theorem of 2D projective geometry 
there corresponds a dual theorem, which may be derived by 
interchanging the roles of points and lines in the original theorem.  
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The intersection of two lines 𝒍 and 𝒍’ is the point 𝒙 = 𝒍 × 𝒍’

The line through two points 𝒙 and 𝒙′ is the line 𝒍 = 𝒙 × 𝒙’



Parallel lines meet at a point in Infinty

13/11/2013Computer Vision I: Image Formation Process 25

𝒍’

𝒍

𝒍 =
1
0
1

; 𝒍′ =
2
0
1

𝒍 × 𝒍′=  
0 −1 0
1 0 −1
0 1 0

2
0
1

=
0
1
0

Point at 
infinty

In 𝑅2 (Plane 𝑤 = 1)

𝑥

𝑦

intersection𝒍 𝒍’

(-1,0,1)

(-1,1,1)

(-1/2,0,1)

(-1/2,1,1)



Points at infinty in 3D

13/11/2013Computer Vision I: Image Formation Process 26

• Parallel lines in 3D meet at a point at infinty 

• Points at infinty can be real points in a camera 

0
1
0
0

3x4 Camera
Matrix
3D->2D 
projection

3D Point at 
infinty

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
𝑖 𝑗 𝑘 𝑙

𝑏
𝑓
1

=

Real point in 
the image



2D conic “Kegelschnitt”
• Conics are shapes that arise when a plane intersects a cone

• In compact form: 𝒙𝒕𝑪 𝒙 = 𝟎 where C has the form:

• This can be written as in in-homogenous coordinates:
𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

where 𝒙 =

• 𝑪 has 5DoF since unique up to scale:
𝒙𝒕𝑪 𝒙 = 𝑘𝒙𝒕𝑪 𝒙 = 𝒙𝒕𝑘𝑪 𝒙 = 𝟎

• Properties: 𝒍 is tangent to 𝑪 at a point 𝒙 if 𝒍 = 𝑪𝒙
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𝑎 𝑏/2 𝑑/2
𝑏/2 𝑐 𝑒/2
𝑑/2 𝑒/2 𝑓

C =



Example: 2D Conic

13/11/2013Computer Vision I: Image Formation Process 28

A circle:
𝑥2 + 𝑦2 − 𝑟2 = 0

Parabola:
𝑦2 = 0

r

x

y



Define a conic with five points
Given 5 points (𝑥𝑖 , 𝑦𝑖 , 1) we can write:

This is a 5 × 6 matrix. The 1D null-space gives the conic up to scale. 

Compute Nullspace with Gaussian elimination or SVD
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as with 

That gives: 



2D transformations

2D Transformations in 𝑅2
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Definition:
• Euclidean: translation + rotation
• Similarity (rigid body transform): Euclidean + scaling
• Affine: Similarity + shearing
• Projective: arbitrary linear transform in homogenous coordinates 



2D Transformations of points 

Advantage of homogeneous coordinates (going into 𝑃2) 
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• 2D Transformations in homogenous coordinates: 

𝑥
𝑦
1

Transformation 
matrix

𝑎 𝑏 𝑑
𝑒 𝑓 ℎ
𝑖 𝑗 𝑙

𝑥′
𝑦′

𝑤′
=

• Example: translation

𝑥′
𝑦′

= 𝑥
𝑦

+ 𝑡𝑥
𝑡𝑦

𝑥
𝑦
1

1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

𝑥′
𝑦′
1

=

homogeneous coordinates inhomogeneous coordinates



2D transformations of points
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Here R is a 2 x 2 rotation matrix with 1 DoF which 

can be written as:  
cosΘ −sin Θ
sin Θ cosΘ

[from Hartley Zisserman Page 44]

(two special points on the line at infity )



2D transformations of lines and conics

All points move: 𝒙‘ = 𝑯𝒙 then:

1) Line (defined by points) moves: 
𝒍′= (𝑯−1) 𝒍

2) conic (defined by points) moves: 
𝑪′ = (𝑯−1) 𝑪 𝑯−1
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𝑯t

t



Example: Projective Transformation
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Picture from top Affine transformation Picture from the side 
(projective transformation)

1. Circles on the floor are 
circles in the image

2. Squares on the floor are 
squares in teh image

1. Circles on the floor are 
ellipse in the image

2. Squares on the floor are 
sheared in the image

3. Lines are still parallel

1. Lines converge to a 
vanishing point not at 
infinity



Persepcitive Distortion
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• The exterior columns appear bigger
• The distortion is not due to lens flaws
• Problem was pointed out by Da Vinci



Now in 3D: Points

• 𝒙 = 𝑥, 𝑦, 𝑧 ∈ 𝑅3 has 3 DoF

• In homogeneous coordinates:  𝑥, 𝑦, 𝑧, 1 ∈ 𝑃3

• 𝑃3 is defined as the space 𝑅3 \ (0,0,0,0) such that points 
𝑥, 𝑦, 𝑧, 𝑤 and 𝑘𝑥, 𝑘𝑦, 𝑘𝑧, 𝑘𝑤 are the same for all 𝑘 ≠ 0

• Points: 𝑥, 𝑦, 𝑧, 0 ∈ 𝑃3 are called points at infinity
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Now in 3D: Planes
• Planes in 𝑅3 are defined as by 4 paramters (3 DoF):

• Normal: 𝑛 = 𝑛𝑥, 𝑛𝑦, 𝑛𝑧
• Offset: d

• All points (𝑥, 𝑦, 𝑧) lie on the plane if:

𝑥 𝑛𝑥 + 𝑦 𝑛𝑦 + 𝑧 𝑛𝑧 + 𝑑 = 0

• In homogeous coordinates: 

𝒙 𝜋 = 0, where 𝑥 = (𝑥, 𝑦, 𝑧, 1) and 𝜋 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧 , 𝑑)

• Planes in 𝑃3 are written as: 𝒙 𝜋 = 0

• Points and planes are dual in 𝑃3 (as points and lines have been in 𝑃2)

• Plane at infinity is 𝜋 = (0,0,0,1) since all points at infinity (x,y,z,0) lie on it.
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Plane at infinity
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𝑥

𝑦

𝑧

Point at infinityPoint at infinity

line at infinity

All of these elements at infinity lie 
on the plane at infinity



What is the horizon?
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The ground plane is special (we/things stand on it) 

Horizon is a line at infinity where plane at infinity intersects ground plane 

𝑥

𝑦

𝑧

Ground plane: (0,0,1,0)
Plane at infinity: (0,0,0,1)

Many lines and planes in our real world meet 
at the horizon (since parallel to ground plane)



Why plane at infinity is important (we do later)
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Plane at infinity can be used 
to simplify 3D reconstruction 

Plane at infinity is important to 
visualize 3D reconstructions nicely



Now in 3D: Lines

• Unfortunately not a compact form 
(as for points) 

• A simple representation in 𝑅3. 
Define a line via two points 𝑝, 𝑞 ∈ 𝑅3:

𝒓 = 1 − 𝜆 𝒑 + 𝜆 𝒒

• A line has 4 DoF (both points 𝒑, 𝒒 can move arbitrary on the line)

• A more compact, but more complex, way two define a 3D Line is to 
use Plücker coordinates:

𝑳 = 𝒑𝒒𝒕 – 𝒒𝒑𝒕 where det 𝑳 = 0

here 𝑳, 𝒑, 𝒒 are in homogenous coordinates 
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Now in 3D: Quadrics

• Points 𝑿 on the quadric if: 𝑿𝑻 𝑸 𝑿 = 0

• A quadric 𝑸 is a surface in 𝑃3

• A quadric is a symmetric 4 × 4 matrix with 9 DoF  
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3D Transformation
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3D Rotations

Rotation 𝑹 in 3D has 3 DoF. It is slightly more complex, and several 
options exist:

1) Euler angles: rotate around, 𝑥, 𝑦, 𝑧-axis in order 
(depends on order, not smooth in parameter space)

2) Axis/angle formulation:
𝑹 𝒏, Θ = 𝑰 + sinΘ 𝒏 × + 1 − cosΘ 𝒏 ×

2

𝒏 is the normal vector (2 DoF) and Θ the angle (1 DoF)

3) Another option is unit quaternions (see book page 40)
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Roadmap this lecture (image formation process)

• Geometric primitives and transformations (sec. 2.1.1-2.1.4)

• Geometric image formation process (sec. 2.1.5, 2.1.6)

• Pinhole camera

• Lens effects

• The Human eye 

• Photometric image formation process (sec. 2.2)

• Camera Types and Hardware (sec 2.3) 
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How can we capture the world

• Let’s design a camera

• Idea 1: put a piece of film (or a CCD) in front of an object

• Do we get a reasonable image?
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Pinhole Camera

• Add a barrier to block off most of the rays

• This reduces blurring

• The opening is known as the aperture (“Blende”)
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Pinhole camera model

Pinhole model:

• Captures pencil of rays – all rays through a single point

• Projected rays are straight lines

• The point where all rays meet is called center of projection 
(focal point)

• The image is formed on the image plane
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Focal point

Image plane



Pinhole camera – Properties 

• Many-to-one: any point along the same ray maps to the same 
point in the image

• Points map to points

(But projection of points on focal plane is undefined)

• Lines map to lines (collinearity is preserved)
(But line through focal point projects to a point)

• Planes map to planes (or half-plane)

(But plane through focal point projects to line)
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Focal 
plane

Ground plane



Pinhole Camera

A model for many common sensors:

• Photographic cameras

• human eye

• X-ray machines
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Dimensionality Reduction Machine (3D to 2D)

13/11/2013Computer Vision I: Image Formation Process 51



Pinhole camera model – in maths
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• Similar trinagles:  
𝑦

𝑓
=

𝑌

𝑍

• That gives:  𝑦 = 𝑓
𝑌

𝑍
and 𝑥 = 𝑓

𝑋

𝑍

𝑦
𝑦

𝑥

• That gives:      
𝑥
𝑦
1

=  
𝑓 0 0
0 𝑓 0
0 0 1

𝑋
𝑌
𝑍

(remeber “=“ means equal up to scale)

3D inhomogenous
coordinate

2D homogenous 
coordinate

focal length



Pinhole camera model – in maths
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𝑦
𝑦

𝑥

That gives:      
𝑥
𝑦
1

=  
𝑓 0 0
0 𝑓 0
0 0 1

𝑋
𝑌
𝑍

Calibration matrix 𝑲

In short 𝒙 = 𝑲 𝑿 (here 𝑿 means inhomogeneous coordinates)

Intrinsic Camera Calibration means we know 𝑲 (we do that later)

We can go from image points into the 3D world: 𝑿 = 𝑲−𝟏 𝒙

~ ~

~



Pinhole camera - definitions
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• Principal axis: line from the camera center perpendicular to the image plane
• Normalized (camera) coordinate system: camera center is at the origin and the 

principal axis is the z-axis
• Principal point (p): point where principal axis intersects the image plane (origin 

of normalized coordinate system)



Principal Point
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Image 
coordinate system

• Camera coordinate system: origin is at the principal point

• Image coordinate system: origin is in the corner

In practice: principal point in center of the image

Principal point (𝑝𝑥, 𝑝𝑦)



Adding principal point  into 𝑲
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That gives:      
𝑥
𝑦
1

=  
𝑓 0 𝑝𝑥
0 𝑓 𝑝𝑦
0 0 1

𝑋
𝑌
𝑍

Image 
coordinate system

Principal point (𝑝𝑥, 𝑝𝑦)

Projection with principal point :  𝑦 = 𝑓
𝑌

𝑍
+ 𝑝𝑦 =

𝑓𝑌+𝑍𝑝𝑦

𝑍
and 𝑥 = 𝑓

𝑋

𝑍
+ 𝑝𝑥 = 

𝑓𝑋+𝑍𝑝𝑥

𝑍



Pixel Size and Shape
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• 𝑚𝑥 pixels per unit (m,mm,inch,...) in horizontal direction
• 𝑚𝑦 pixels per unit (m,mm,inch,...) in vertical direction

• 𝑠′ skew of a pixel 
• In practice (close to): m=1 s = 0

That gives:      
𝑥
𝑦
1

=  
𝑚𝑥 𝑠′ 0
0 𝑚𝑦 0

0 0 1

𝑓 0 𝑝𝑥
0 𝑓 𝑝𝑦
0 0 1

𝑋
𝑌
𝑍

Simplified to:      
𝑥
𝑦
1

= 
𝑓 𝑠 𝑝𝑥
0 𝑚𝑓 𝑝𝑦
0 0 1

𝑋
𝑌
𝑍

Final calibration matrix 𝑲

𝑓 now in units of pixels



Camera intrinsic parameters - Summary

• Intrinsic parameters

• Principal point coordinates (𝑝𝑥, 𝑝𝑦)

• Focal length 𝑓

• Pixel magnification factors 𝑚

• Skew (non-rectangular pixels) 𝑠
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𝑲 =
𝑓 𝑠 𝑝𝑥
0 𝑚𝑓 𝑝𝑦
0 0 1

For later: 
We sometimes have to only guess these values and 
then they are optimized over (bundle adjustment): 

• 𝑝 in image center, 
• 𝑠 = 0,𝑚 = 1
• f= EXIF tag (or guess, e.g. two times image size) 



Putting the camera into the world
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Given a 3D homogenous point𝑿𝒘in world coordinate system

1) Translate from world to camera coordinate system:
𝑿𝒄′ = 𝑿𝒘 − 𝑪
𝑿𝒄′ = (𝑰𝟑×𝟑 | − 𝑪) 𝑿𝒘 where 𝑰𝟑×𝟑 is 3x3 identity matrix

2) Rotate world coordinate system into camera coordinate system
𝑿𝒄 = 𝑹 (𝑰𝟑×𝟑 | − 𝑪) 𝑿𝒘

3) Apply camera matrix
𝒙 = 𝑲 𝑹 (𝑰𝟑×𝟑 | − 𝑪) 𝑿

World coordinate system

camera coordinate system

~

~

~
~

~

~

~~

𝑿𝒘

𝟑 × 𝟒 matrix



Camera matrix

• Camera matrix 𝑷 is defined as:

𝒙 = 𝑲 𝑹 (𝑰𝟑×𝟑 | − 𝑪) 𝑿

• In short we write: 𝒙 = 𝑷 𝑿

• The camera center is the (right) nullspace of P

𝑷 𝑪 = 𝑲𝑹 (𝑪 − 𝑪) = 0
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~

𝑷 𝟑 × 𝟒 camera matrix has 11 DoF

~~



Camera parameters - Summary

• Camera matrix P has 11 DoF

• Intrinsic parameters

• Principal point coordinates (𝑝𝑥, 𝑝𝑦)

• Focal length 𝑓

• Pixel magnification factors 𝑚

• Skew (non-rectangular pixels) 𝑠

• Extrinsic parameters

• Rotation 𝑹 (3DoF) and translation 𝐂 (3DoF) relative to world 
coordinate system
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𝒙 = 𝑲 𝑹 (𝑰𝟑×𝟑 | − 𝑪) 𝑿~

~

𝑲 =
𝑓 𝑠 𝑝𝑥
0 𝑚𝑓 𝑝𝑦
0 0 1

𝒙 = 𝑷 𝑿



Orthographic Projection

Special case of perspective projection

• Distance from center of projection to image plane is infinite
(infinite focal length)

• Also called “parallel projection”

• Most simple from of projection
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𝑥
𝑦
1

=  
1 0 0 0
0 1 0 0
0 0 0 1

𝑋
𝑌
𝑍
1



Affine cameras
• Most general camera that does parallel projection are:

• Parallel lines map to parallel lines (since points at infinity stay)

• Affine cameras simplify 3D reconstruction task, hence good to get an 
approximate solution

• See more details on: HZ (Hartley, Zissermann) chapter 6.3

13/11/2013Computer Vision I: Image Formation Process 63

𝑥
𝑦
1

=  
𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
0 0 0 1

𝑋
𝑌
𝑍
𝑤

𝑥
𝑦
0

=  
𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
0 0 0 1

𝑋
𝑌
𝑍
0



Going from perspective to orthographic
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(very large focal length)(normal focal length)



Roadmap this lecture (image formation process)

• Geometric primitives and transformations (sec. 2.1.1-2.1.4)

• Geometric image formation process (sec. 2.1.5, 2.1.6)

• Pinhole camera

• Lens effects

• The Human eye 

• Photometric image formation process (sec. 2.2)

• Camera Types and Hardware (sec 2.3) 
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Home-made pinhole camera
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http://www.debevec.org/Pinhole/

Why so 
blurry?



Shrinking the aperture
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Why not make the aperture as small as possible?
• Less light gets through
• Diffraction effects…



Shrinking the aperture
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Diffraction 
effects. Noise 
due to long 
exposure



Adding a lens

• A lens focuses light onto the film 

• Lets enough ligh through

• Rays passing through the center are not deviated
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In Focus
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• There is a specific distance at which objects are “in focus”

• other points project to a “circle of confusion” in the image



Focal point

• All parallel rays converge to one point on a plane located at the 
focal length f
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Thin lens formula
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Green similiar triangles:
𝑦′

𝑦
=
𝐷′

𝐷

Yellow similiar triangles:
𝑦′

𝑦
=
𝐷′ − 𝑓

𝑓

𝐷′

𝐷
= 
𝐷′−𝑓

𝑓
⇒

𝐷′

𝐷
= 
𝐷′

𝑓
− 1 ⇒

1

𝐷
+

1

𝐷′ =
1

𝑓
Thin lens formula

Any point satisfying the thin lens equation is in focus.



Depth of Field
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Control the depth of field

Changing the aperture size affects depth of field

• A smaller aperture increases the range in which the object is 
approximately in focus (but longer exposure needed)
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Fields of View
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Field of View / Focal Length

13/11/2013Computer Vision I: Image Formation Process 76

Close to affine 
camera (look 
at front light)



Same effect for faces
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Small 𝑓 Large 𝑓



Lens Flaws: Chromatic Aberration
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High quality lens (top)

low quality lens (bottom)
blur + green edges

Purple fringing

Lens has different refractive indices for different
wavelengths: causes color fringing



Lens flaws: Vignetting
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Lens distortion

• Caused by imperfect lenses

• Deviations are most noticeable for rays that pass through the edge 
of the lens
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Reading for next class

This lecture: 

• Geometric primitives and transformations (sec. 2.1.1-2.1.4)

• Geometric image formation (sec 2.1.5, 2.1.6, HZ ?)

Next lecture: 

• Photometric image formation (sec 2.2)

• Camera Types and Hardware (sec 2.3) 

• Appearance matching: (sec. 4.1.2-4.1.3)
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