
INCREMENTAL CLUSTERING AND
DYNAMIC INFORMATION RETRIEVAL∗

MOSES CHARIKAR† , CHANDRA CHEKURI‡ , TOMAS FEDER§ , AND

RAJEEV MOTWANI¶

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 6, pp. 1417–1440

Abstract. Motivated by applications such as document and image classification in information
retrieval, we consider the problem of clustering dynamic point sets in a metric space. We propose a
model called incremental clustering which is based on a careful analysis of the requirements of the
information retrieval application, and which should also be useful in other applications. The goal
is to efficiently maintain clusters of small diameter as new points are inserted. We analyze several
natural greedy algorithms and demonstrate that they perform poorly. We propose new deterministic
and randomized incremental clustering algorithms which have a provably good performance, and
which we believe should also perform well in practice. We complement our positive results with
lower bounds on the performance of incremental algorithms. Finally, we consider the dual clustering
problem where the clusters are of fixed diameter, and the goal is to minimize the number of clusters.

Key words. incremental clustering, dynamic information retrieval, minimum diameter cluster-
ing, agglomerative clustering, k-center, performance guarantee

AMS subject classifications. 68Q25, 68W40

DOI. 10.1137/S0097539702418498

1. Introduction. We consider the following problem: as a sequence of points
from a metric space is presented, efficiently maintain a clustering of the points so as to
minimize the maximum cluster diameter. Such problems arise in a variety of applica-
tions, in particular in document and image classification for information retrieval. We
propose a model called incremental clustering based primarily on the requirements
for the information retrieval application, although our model should also be relevant
to other applications. We begin by analyzing several natural greedy algorithms and
discover that they perform rather poorly in this setting. We then identify some new
deterministic and randomized algorithms with provably good performance. We com-
plement our positive results with lower bounds on the performance of incremental
algorithms. We also consider the dual clustering problem where the clusters are of
fixed diameter, and the goal is to minimize the number of clusters. Before describing
our results in any greater detail, we motivate and formalize our new model.

∗Received by the editors November 25, 2002; accepted for publication (in revised form) April 2,
2004; published electronically August 27, 2004. A preliminary version of this paper appeared in
Proceedings of the 29th Annual ACM Symposium on Theory of Computing, 1997.

http://www.siam.org/journals/sicomp/33-6/41849.html
†Department of Computer Science, Princeton University, Princeton, NJ 08544 (moses@cs.

princeton.edu). The majority of this work was done while the author was at Stanford University and
was supported by Rajeev Motwani’s NSF award CCR-9357849. This author is currently supported
by NSF ITR CCR-0205594, DOE award DE-FG02-02ER25540, NSF CAREER award CCR-0237113,
and an Alfred P. Sloan fellowship.

‡Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974 (chekuri@research.bell-labs.com). The
majority of this work was done while the author was at Stanford University and was supported by
Rajeev Motwani’s NSF award CCR-9357849.

§E-mail: tomas@theory.stanford.edu.
¶Department of Computer Science, Stanford University, Stanford, CA 94305-9045 (rajeev@cs.

stanford.edu). This author’s work was supported by an Alfred P. Sloan Research fellowship, an IBM
Faculty Partnership award, ARO MURI grant DAAH04-96-1-0007, and NSF Young Investigator
award CCR-9357849, with matching funds from IBM, Mitsubishi, Schlumberger Foundation, Shell
Foundation, and Xerox Corporation.

1417

1418 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

Clustering is used for data analysis and classification in a wide variety of ap-
plications [1, 20, 29, 35, 44]. It has proved to be a particularly important tool in
information retrieval for constructing a taxonomy of a corpus of documents by form-
ing groups of closely related documents [21, 24, 37, 44, 45, 47, 48]. For this purpose,
a distance metric is imposed over documents, enabling us to view them as points in
a metric space. The central role of clustering in this application is captured by the
so-called cluster hypothesis: documents relevant to a query tend to be more similar to
each other than to irrelevant documents and hence are likely to be clustered together.
Typically, clustering is used to accelerate query processing by considering only a small
number of representatives of the clusters, rather than the entire corpus. In addition,
it is used for classification [19] and has been suggested as a method for facilitating
browsing [16, 17].

The current information explosion, fueled by the availability of hypermedia and
the World Wide Web, has led to the generation of an ever-increasing volume of data,
posing a growing challenge for information retrieval systems to efficiently store and
retrieve this information [50]. A major issue that document databases are now facing
is the extremely high rate of update. Several practitioners have complained that exist-
ing clustering algorithms are not suitable for maintaining clusters in such a dynamic
environment, and they have been struggling with the problem of updating clusters
without frequently performing complete reclustering [7, 8, 9, 15, 45]. From a theoret-
ical perspective, many different formulations are possible for this dynamic clustering
problem, and it is not clear a priori which of these best addresses the concerns of
the practitioners. After a careful study of the requirements, we propose the model
described below.

Hierarchical agglomerative clustering. The clustering strategy employed almost
universally in information retrieval is hierarchical agglomerative clustering (HAC);
see [20, 44, 45, 47, 48, 49]. This is also popular in other applications such as biology,
medicine, image processing, and geographical information systems. The basic idea is
this: initially assign the n input points to n distinct clusters; repeatedly merge pairs
of clusters until their number is sufficiently small. Many instantiations have been
proposed and implemented, differing mainly in the rule for deciding which clusters to
merge at each step. Note that HAC computes hierarchy trees of clusters (also called
dendograms) whose leaves are individual points and whose internal nodes correspond
to clusters formed by merging clusters at their children. A key advantage of these trees
is that they permit refinement of responses to queries by moving down the hierarchy.
Typically, the internal nodes are labeled with indexing information (sometimes called
conceptual information) used for processing queries and in associating semantics with
clusters (e.g., for browsing). Experience shows that HAC performs extremely well
both in terms of efficiency and cluster quality. In the dynamic setting, it is desirable
to retain the hierarchical structure while ensuring efficient update and high-quality
clustering. An important goal is to avoid any major modifications in the clustering
while processing updates, since any extensive recomputation of the index information
will swamp the cost of clustering itself. The input size in typical applications is such
that superquadratic time is impractical, and in fact it is desirable to obtain close to
linear time.

A model for incremental clustering. Various measures of distance between doc-
uments have been proposed in the literature, but we will not concern ourselves with
the details thereof; for our purposes, it suffices to note that these distance measures
induce a metric space. Since documents are usually represented as high-dimensional
vectors, we cannot make any stronger assumption than that of an arbitrary metric

INCREMENTAL CLUSTERING 1419

space, although, as we will see, our results improve significantly in geometric spaces.
Formally, the clustering problem is as follows: given n points in a metric space M,

partition the points into k clusters so as to minimize the maximum cluster diameter.
The diameter of a cluster is defined to be the maximum interpoint distance in it.
Sometimes the objective function is chosen to be the maximum cluster radius. In
Euclidean spaces, radius denotes the radius of the minimum ball enclosing all points in
the cluster. To extend the notion of radius to arbitrary metric spaces, we first select a
center point in each cluster, whereupon the radius is defined as the maximum distance
from the center to any point in the cluster. We will assume the diameter measure
as the default. We mention that there are several other measures of cluster quality
that have been considered in the literature (e.g., sum of squares of distances to cluster
centers, etc.). In this paper, we shall consider only the radius and diameter measures.

We define the incremental clustering problem as follows: for an update sequence
of n points in M, maintain a collection of k clusters such that as each input point
is presented, either it is assigned to one of the current k clusters or it starts off a
new cluster while two existing clusters are merged into one. We define the perfor-
mance ratio of an incremental clustering algorithm as the maximum over all update
sequences of the ratio of its maximum cluster diameter (or radius) to that of the
optimal clustering for the input points.

Our model enforces the requirement that at all times an incremental algorithm
should maintain a HAC for the points presented up to that time. As before, an
algorithm is free to use any rule for choosing the two clusters to merge at each step.
This model preserves all the desirable properties of HAC while providing a clean
extension to the dynamic case. In addition, it has been observed that such incremental
algorithms exhibit good paging performance when the clusters themselves are stored
in secondary storage, while cluster representatives are preserved in main memory [42].

We have avoided labeling this model as the online clustering problem or referring
to the performance ratio as a competitive ratio [34] for the following reasons. Recall
that in an online setting, we would compare the performance of an algorithm to that
of an adversary which knows the update sequence in advance but must process the
points in the order of arrival. Our model has a stronger requirement for incremental
algorithms, in that they are compared to adversaries which do not need to respect the
input ordering, i.e., we compare our algorithms to optimal clusterings of the final point
set, and no intermediate clusterings need be maintained. Also, online algorithms are
permitted superpolynomial running times. In contrast, our model essentially requires
polynomial-time approximation algorithms which are constrained to incrementally
maintain a HAC. It may be interesting to explore the several different formulations
of online clustering; for example, when the newly inserted point starts off a new
cluster, we could allow the points of one old cluster to be redistributed among the
remaining, rather than requiring that two clusters be merged together. The problem
with such formulations is that they do not lead to HACs; moreover, they entail the
recomputation of the index structures for all clusters, which renders the algorithms
useless from the point of view of real applications. We note that since the incremental
clustering model is more restrictive than the online model, our algorithms can also
be viewed as online clustering algorithms; the competitive ratios are the same as the
performance ratios that we prove here.

Previous work in static clustering. The closely related problems of clustering to
minimize diameter and radius are also called pairwise clustering and the k-center prob-
lem, respectively [4, 30]. Both are NP-hard [25, 38], and in fact hard to approximate
to within a factor of 2 for arbitrary metric spaces [4, 30]. For Euclidean spaces, clus-

1420 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

tering on the line is easy [6], but in higher dimensions it is NP-hard to approximate to
within factors close to 2, regardless of the metric used [22, 23, 27, 39, 40]. The furthest
point heuristic due to Gonzalez [27] (see also Hochbaum and Shmoys [32, 33]) gives a
2-approximation in all metric spaces. This algorithm requires O(kn) distance compu-
tations, and when the metric space is induced by shortest-path distances in weighted
graphs, the running time is O(n2). Feder and Greene [22] gave an implementation for
Euclidean spaces with running time O(n log k).

Clustering problems have been extensively studied in different communities from a
variety of different perspectives. The optimization viewpoint of clustering formulates
the problem as that of finding a solution that optimizes a certain objective function
that measures cluster quality. In addition to the minimum diameter and radius mea-
sures described above, several other objective functions have also been considered in
the literature. A lot of recent work has focused on the k-median objective [11, 36, 2].
Here the goal is to assign points to k centers such that the sum of distances of points
to their centers is minimized. Other objectives that have been studied include the
objective of minimizing the sum of all distances within each cluster [3, 18] and that of
minimizing the sum of cluster diameters [14]. In addition to this, outlier formulations
of clustering problems have also been studied [12]. Here the algorithm is allowed
to discard a fraction of the input as outliers and is required to obtain a clustering
solution that minimizes a given objective function on the remaining input points.

Overview of results. Our results for incremental clustering show that it is possible
to obtain algorithms that are comparable to the best possible in the static setting,
both in terms of efficiency and performance ratio. We begin in section 2 by considering
natural greedy algorithms that choose clusters to merge based on some measure of the
resulting cluster. We establish that greedy algorithms behave poorly by proving that
a center-greedy algorithm has a tight performance ratio of 2k − 1, and a diameter-
greedy algorithm has a lower bound of Ω(log k). It seems likely that greedy algorithms
behave better in geometric spaces, and we discover some evidence in the case of the
line. We show that diameter-greedy has performance ratio 2 for k = 2 on the line.
This analysis suggests a variant of diameter-greedy, and this is shown to achieve
ratio 3 for all k on the line. In section 3 we present the doubling algorithm and
show that its performance ratio is 8, and that a randomized version has ratio 5.43.
While the obvious implementation of these algorithms is expensive, we show that
they can be implemented so as to achieve amortized time O(k log k) per update.
These results for the doubling algorithm carry over to the radius measure. We also
give a variant of this algorithm that is oblivious to the number of clusters k. We
maintain a hierarchy from which, for any given k, at most k clusters can be obtained
such that the diameter of the clusters is at most a factor of 8 times the optimal
diameters for that value of k. Then, in section 4, we present the clique algorithm
and show that it has performance ratio 6, and that a randomized version has ratio
4.33. While the clique algorithm may appear to dominate the doubling algorithm,
this is not the case since the former requires computing clique partitions, an NP-
hard problem, although it must be said in its defense that the clique partitions need
only be computed in graphs with k + 1 vertices. While the performance ratio of
the clique algorithm is 8 for the radius measure, improved bounds are possible for
d-dimensional Euclidean spaces; specifically, we show that the radius performance
ratio of the clique algorithm in �d improves to 4(1 +

√
d/(2d + 2)), which is 6 for

d = 1, and is asymptotic to 6.83 for large d. In section 5, we provide lower bounds
for incremental clustering algorithms. We show that even for k = 2 and on the
line, no deterministic or randomized algorithm can achieve a ratio better than 2.

INCREMENTAL CLUSTERING 1421

Table 1.1

Summary of results: An asterisk indicates randomization. All algorithms have lower bounds
on their performance ratios that match the upper bounds we establish.

Measure Algorithm Upper bound Lower bound

Diameter 1 +
√

2
Center-greedy 2k − 1
Diameter-greedy Ω(log k)
Doubling 8
Clique partition 6

(2 − ε)∗

Doubling 5.437∗

Clique partition 4.33∗

Radius 3
Doubling 8
Clique partition 8

(3 − ε)∗

Doubling 5.437∗

Clique partition 5.77∗

Dual clust. Ω(log d
log log log d

) in �d

O(2dd log d) in �d Ω(2dd log d)

We improve this lower bound to 2.414 for deterministic algorithms in general metric
spaces. Finally, in section 6 we consider the dual clustering problem of minimizing the
number of clusters of a fixed radius. Since it is impossible to achieve bounded ratios
for general metric spaces, we focus on d-dimensional Euclidean spaces. We present
an incremental algorithm that has performance ratio O(2dd log d), and also provide a
lower bound of Ω(log d/ log log log d). See Table 1.1 for a summary of our results.

Many interesting directions for future research are suggested by our work. There
are the obvious questions of improving our upper and lower bounds, particularly for
the dual clustering problem. An important theoretical question is whether the geomet-
ric setting permits better ratios than metric spaces do. Our model can be generalized
in many different ways. Depending on the exact application, we may wish to consider
other measures of clustering quality, such as minimum variance in cluster diameter,
and the sum of squares of the interpoint distances within a cluster. Then there is
the issue of handling deletions which, though not important for our motivating appli-
cation of information retrieval, may be relevant in other applications. Finally, there
is the question of formulating a model for adaptive clustering, wherein the clustering
may be modified as a result of queries and user feedback, even without any updates.

Recently, there has been considerable attention devoted to the streaming data
model which was formalized and extensively studied after the appearance of the con-
ference version of this paper. The streaming model is motivated by the goal of design-
ing highly efficient algorithms for very large data sets. In this model, an algorithm is
required to perform its computation in one pass or a few passes over the data while
using very little memory. Our algorithms can be viewed as streaming algorithms for
clustering problems where the goal is to minimize the maximum diameter or radius of
the clusters produced. Subsequent to this work, other clustering objectives have also
been studied in the streaming model, most notably the k-median objective [28, 13]
and the sum of cluster diameters objective [14].

2. Greedy algorithms. We begin by examining some natural greedy algo-
rithms. A greedy incremental clustering algorithm always merges clusters to minimize

1422 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

some fixed measure. Our results indicate that such algorithms perform poorly.

Definition 2.1. The center-greedy algorithm associates a center for each cluster
and merges the two clusters whose centers are closest. The center of the old cluster
with the larger radius becomes the new center.

It is possible to define variants of center-greedy based on how the centers of the
clusters are picked, but we restrict ourselves to the above definition for reasons of
simplicity and intuitiveness.

Definition 2.2. The diameter-greedy algorithm always merges those two clusters
which minimize the diameter of the resulting merged cluster.

We can establish the following lower bounds on the performance ratio of these
two greedy algorithms.

Theorem 2.3. The center-greedy algorithm’s performance ratio has a lower
bound of 2k − 1.

Proof. We first construct a graph G = (V,E) which defines the metric space on
which center-greedy has a performance ratio of 2k − 1. The vertex set of G is the
union of 2k disjoint sets S0, S1, . . . , S2k−1 with a total of 2k + k − 1 vertices. The
request sequence consists of the entire set of vertices v1, v2, . . . , v2k+k−1. We use a
complete binary tree T = (VT , ET) whose leaves in a left to right order are the vertices
v1, . . . , v2k to describe our construction. Each internal node x of T has a binary label
associated with it, denoted by label(x). Let xl and xr be the left and right children of
node x. We recursively define the labels of nodes of T as follows. The root of the tree
is labeled with 0. If label(x) = i, we set label(xl) = i and label(xr) = 1− i. With each
edge (x, y) of the tree we associate an integer weight of value label(x) + label(y) − 1.
Note that the weights belong to {−1, 0, 1} by our labeling procedure. We now specify
the sets S0, S1, . . . , S2k−1. A leaf vi belongs to the set Sj if and only if the sum of
the weights of the edges on the path from vi to the root of T is equal to j − k. The
vertices v2k+1, . . . , v2k+k−1 belong to Sk. With each node x of T we also associate a
vertex v(x) of G as follows. If x is a leaf, we set v(x) = x; for an internal node x, we
set v(x) = v(xr). For a node x of T let po(x) = i if x is the ith vertex to be visited
in a post order traversal of T , where we do not include the leaves in the traversal.

Now we specify the distances among the vertices of G. We first specify the edges
present in G and then associate lengths with them. The other distances are induced
by these edges. The edge set E is defined by the sets S0, . . . , S2k−1 as follows:

{(vi, vj) | vi, vj ∈ Sr, 0 ≤ r ≤ 2k − 1}
⋃

{(vi, vj) | vi ∈ Sr, vj ∈ Sr+1, 0 ≤ r < 2k − 1}.

Edges between two vertices in the same set Si are called clique edges. All the clique
edges have length 1. The lengths of the other edges are defined as follows. We do
a post order traversal of T and, as we process each internal node x of T , we set
d(v(x), v(xl)) = 1−εpo(x) such that 1 � ε1 > ε2 > · · · > ε2k−1 > 0. By our placement
of vertices in the sets Si, we are guaranteed that (v(x), v(xl)) ∈ E for all x in T . We
set to 1 any edge-length of an edge in E which is not already determined by the above
process. See Figure 2.1 for an illustration of the construction.

Let Cx denote the cluster with v(x) as the center and the leaves in the subtree
rooted at x as the elements. Let po−1(i) denote the vertex x where po(x) = i. For
1 ≤ i ≤ 2k − 1, let Ai be the set of clusters Cy such that y is the left child of some
node on the path from po−1(i) to the root of T but does not itself lie on the path.
We also include Cx in Ai, where x = po−1(i).

The lower bound is based on the following two claims.

INCREMENTAL CLUSTERING 1423

0

1

0

1

0

0

0

1

0 1

1

1

1 0 1

0

1 0 0 0

0

1 101 1

0

0

0

0

0

00

0

0 0

0

0 00

1

−1

1

0

0

−1

0

−1

−1

−1

−1−1−1

+1 0

+1

+1 +1 +1

+1

+1

v v v v v v v v v v v v v v v v v v v1 2 3 4 5 6 8 11 12 13 15 16 1810 14 17 197 9

S4 S4 S4 S4S S S S S S S S S S S S SS S0 1 3 2 5 4 2 3 7 6 4 5 2 3 5

1−e 1−e 1−e 1−e 1−e 1−e 1−e 1−e

1−e 1−e 1−e 1−e

1−e 1−e

1−e

3

4 8 9

10

11

14

15

21 5

6 13

12

7

Fig. 2.1. Illustration of the lower bound construction for center-greedy for k = 4. The instance
consists of 2k + k − 1 = 19 vertices labeled v1, . . . , v19. Each vertex belongs to one of the sets
S0, . . . , S7 as indicated. Vertex and edge labels defined on the tree structure are illustrated. The
curved edges at the bottom of the figure indicate the additional edges added. (Note that distances
within each Si are all 1 and are not shown in the figure.) The curved edges also indicate the order
in which clusters are merged by the center-greedy algorithm: cluster centers at the end points of the
edge labeled 1 − ε1 are first merged followed by centers at the end points of the edge labeled 1 − ε2,
then 1 − ε3 and so on.

Claim 2.4. For 1 ≤ i ≤ 2k − 1, Ai is the set of clusters of center-greedy which
contain more than one vertex after the k + i vertices v1, . . . , vk+i are given.

Observe that v1 ∈ S0 and v2k−1+1 ∈ S2k−1, and the distance between them is at
least (2k − 1)(1 − ε1). From the above claim it follows that at the end of the request
sequence, all the vertices v1, . . . , v2k are in one cluster. Therefore, the diameter of
this cluster is at least (2k − 1)(1 − ε1).

Claim 2.5. There is a k-clustering of G of diameter 1.

The clustering which achieves the above diameter is {S0∪S1, . . . , S2k−2∪S2k−1}.
This finishes the proof of the theorem.

Theorem 2.6. The diameter-greedy algorithm’s performance ratio is Ω(log k),
even on the line.

Proof. We will prove a lower bound of Ω(log k) for diameter-greedy on the real
line. Let Fj be the jth Fibonacci number. Let k and r be such that k = 2

∑r
i=1 Fi.

We will prove a lower bound of r+1 on diameter-greedy. To this end, we define sets of
points Aij for 1 ≤ i ≤ r and 1 ≤ j ≤ Fi. Fix ε and δ such that ε < δ � 1. The set Aij

consists of the points pij , qij , rij , and sij sorted by their x-coordinates; the distances
between them are as follows: d(pij , qij) = 1 + ε, d(qij , rij) = i, and d(rij , sij) = 1 + δ.
Further, the distance between two distinct Aij ’s is set to ∞ (although any sufficiently
large value will do). For i = 1, . . . , r, let Ui, Vi,Wi, Xi, Yi, and Zi denote the following

1424 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

clusters:

Ui = ∪Fi
j=1{{pij , qij}, {rij , sij}},

Vi = ∪Fi
j=1{{qij}, {rij}},

Wi = ∪Fi
j=1{{pij}, {qij , rij}},

Xi = ∪Fi
j=1{{pij}, {qij , rij}, {sij}},

Yi = ∪Fi
j=1{{pij , qij , rij}, {sij}},

Zi = ∪Fi
j=1{{pij , qij , rij , sij}}.

Initially, the points given to diameter-greedy are the points qij and rij for each of
the sets Aij . Let Pi denote the sequence of requests pi1, . . . , piFi and let Si denote
the sequence si1, . . . , siFi

. Define Ki = P1S1P2S2 . . . PiSi. The request sequence is
Kr−1. Note that Kt = Kt−1PtSt. We show inductively that the following invariant
is maintained.

When the last element of Kt is received, diameter-greedy’s k+1 clus-
ters are

(∪t−2
i=1Zi)

⋃
Yt−1

⋃
Xt

⋃
(∪r

i=t+1Vi).

Since there are k + 1 clusters, two of the clusters have to be merged
and the algorithm merges two clusters in Vt+1 to form a cluster of
diameter (t+1). Without loss of generality, we may assume that the
clusters merged are {q(t+1)1} and {r(t+1)1}.

Suppose that the situation is as described above at the end of the sequence Kt.
We will show that the invariant holds at the end of the sequence Kt+1. Note that
Kt+1 = KtPt+1St+1. Observe that merging any two clusters in Yt−1 will increase their
diameter to (t+1+ε+δ). Merging any two clusters in Xt will increase their diameter to
(t+1+ε). Because we start with the situation where there is a cluster {q(t+1)1, r(t+1)1},
the request p(t+1)1 forces the formation of the cluster {q(t+1)2, r(t+1)2}, since any other
merging results in a diameter of more than t+ 1. Thus, at the end of the sequence of
requests Pt+1, we have k + 1 clusters (∪t−2

i=1Zi)
⋃
Yt−1

⋃
Xt

⋃
Xt+1

⋃
(∪r

i=t+2Vi).
Since there are k + 1 clusters, diameter-greedy merges two clusters in Xt to form

a cluster of diameter (t + 1 + ε). Thus, as we give points in St+1, it will form the
clusters Yt. Since Ft+1 > Ft, after Ft requests in the sequence St+1 all the clusters in
Xt would have merged and diameter-greedy starts merging clusters in Yt−1 to form
clusters Zt−1 of diameter (t + 1 + ε + δ). Since Ft+1 = Ft + Ft−1, at the end of the
request sequence St+1 it will have the k+1 clusters (∪t−1

i=1Zi)
⋃
Yt

⋃
Xt+1

⋃
(∪r

i=t+2Vi).
This shows that the invariant is maintained at the end of the request sequence Kt+1.

It is easy to verify that the invariant is true for the base case of t = 3. Thus,
at the end of the request sequence Kr−1, the maximum diameter of the clusters of
diameter-greedy is r. Since k = 2

∑r
i=1 Fi = 2Fr+2 − 2, it follows that r = Ω(log k).

To finish the proof we observe that the optimal clusters are ∪r−1
i=1Ui

⋃
Vr, and the

diameter of these clusters is at most 1 + δ.
We now give a tight upper bound for the center-greedy algorithm. Note that

for k = 3 it has ratio 5, but for larger k its performance is worse than that of the
algorithms to be presented later.

Theorem 2.7. The center-greedy algorithm has performance ratio of 2k − 1 in
any metric space.

INCREMENTAL CLUSTERING 1425

Proof. Suppose that a set P of n points is inserted. Let their optimal clustering
be the partition S = {C1, . . . , Ck}, with d as the optimal diameter. We will show that
the diameter of any cluster produced by center-greedy is at most (2k − 1)d.

We define a graph G on the set S of the optimal clusters, where two clusters are
connected by an edge if the minimum distance between them is at most d, where
the distance between two clusters is the minimum distances between points in them.
Consider the connected components of G. Note that two clusters in different connected
components have a minimum distance strictly greater than d. We say that a cluster
X intersects a connected component consisting of the optimal clusters Ci1 , . . . , Cir if
X intersects ∪r

j=1Cij .

We claim that at all times, any cluster produced by center-greedy intersects ex-
actly one connected component of G. We prove this claim by induction over n.
Suppose the claim is true before a new point p arrives. Initially, p is in a cluster
of its own and center-greedy has k + 1 clusters, each of which intersect exactly one
connected component of G. Since there are k+1 cluster centers, two of them must be
in the same optimal cluster. This implies that the distance between the two closest
centers is at most d. If X1 and X2 are the clusters that center-greedy merges at this
stage, the centers of X1 and X2 must be at most d apart. Hence, both clusters’ centers
must lie in the same connected component of G, say C. By the inductive hypothesis,
all points in X1 and X2 must be in C. Hence, all points in the new cluster X1 ∪X2

must lie in C, establishing the inductive hypothesis.

Since each cluster produced by center-greedy lies in exactly one connected com-
ponent of G, the diameter is bounded by the maximum diameter of a connected
component, which is at most (2k − 1)d.

For diameter-greedy in general metric spaces, we can only prove the following
weak upper bound.

Theorem 2.8. For k = 2, the diameter-greedy algorithm has a performance ratio
3 in any metric space.

Proof. Let d be the diameter in the optimal clustering. If the minimum distance
between the two clusters (in the optimal clustering) is greater than d, then diameter-
greedy keeps the two clusters separate and achieves the optimum. If the minimum
distance between the two clusters is at most d, then all the points together form a
cluster of diameter at most 3d.

In spite of the lower bounds for greedy algorithms, they may not be entirely
useless since some variant may perform well in geometric spaces. We obtain some
positive evidence in this regard via the following analysis for the line. The upper
bounds given here should be contrasted with the lower bound of 2 for the line shown
in section 5. The following definitions underlie the analysis.

Definition 2.9. Given a set S of n points in the line, a t-partition subdivides
the interval between the first and last points of S into t subintervals whose end points
are in S. The t-diameter of S is the minimum over all t-partitions of the maximum
interval length in a t-partition of S. The 1-diameter is the diameter, while the 2-
diameter is the radius of S where the center is constrained to be a point of S.

We define the following family of algorithms based on the notion of the t-diameter.

Definition 2.10. The t-diameter-greedy algorithm merges those two clusters
which minimize the t-diameter of the merged cluster. Note that 1-diameter-greedy is
the same as diameter-greedy.

A few preliminary results on the t-diameter-greedy algorithm can be found in the
appendix.

1426 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

3. The doubling algorithm. We now describe the doubling algorithm which
has performance ratio 8 for incremental clustering in general metric spaces. The
algorithm works in phases and uses two parameters α and β to be specified later,
such that α/(α− 1) ≤ β. At the start of phase i, it has a collection of k + 1 clusters
C1, C2, . . . , Ck+1 and a lower bound di on the optimal clustering’s diameter (denoted
by opt). Each cluster Ci has a center ci which is one of the points of the cluster. The
following invariants are assumed at the start of phase i:

1. for each cluster Cj , the radius of Cj defined as maxp∈Cj
d(cj , p) is at most

αdi;
2. for each pair of clusters Cj and Cl, the intercenter distance d(cj , cl) ≥ di;
3. di ≤ opt.

Each phase consists of two stages: the first is a merging stage, in which the
algorithm reduces the number of clusters by merging certain pairs; the second is the
update stage, in which the algorithm accepts new updates and tries to maintain at
most k clusters without increasing the radius of the clusters or violating the invariants
(clearly, it can always do so by making the new points into separate clusters). A phase
ends when the number of clusters again exceeds k.

Definition 3.1. The t-threshold graph on a set of points P = {p1, p2, . . . , pn}
is the graph G = (P,E) such that (pi, pj) ∈ E if and only if d(pi, pj) ≤ t.

The merging stage works as follows. Define di+1 = βdi, and let G be the di+1-
threshold graph on the k + 1 cluster centers c1, c2, . . . , ck+1. The graph G is used
to merge clusters by repeatedly performing the following steps while the graph is
nonempty: pick an arbitrary cluster Ci in G and merge all its neighbors into it;
make ci the new cluster’s center; and remove Ci and its neighbors from G. Let
C ′

1, C
′
2, . . . , C

′
m be the new clusters at the end of the merging stage. Note that it is

possible that m = k + 1 when the graph G has no edges, in which case the algorithm
will be forced to declare the end of phase i without going through the update stage.

Lemma 3.2. The pairwise distance between cluster centers after the merging stage
of phase i is at least di+1.

Lemma 3.3. The radius of the clusters after the merging stage of phase i is at
most di+1 + αdi ≤ αdi+1.

Proof. Prior to the merging, the distance between two clusters which are adjacent
in the threshold graph is at most di+1, and their radius is at most αdi. Therefore,
the radius of the merged clusters is at most

di+1 + αdi ≤ (1 + α/β)di+1 ≤ αdi+1,

where the last inequality follows from the choice that α/(α− 1) ≤ β.
The update stage continues while the number of clusters is at most k. When a

new point arrives, the algorithm attempts to place it in one of the current clusters
without exceeding the radius bound αdi+1: otherwise, a new cluster is formed with
the update as the cluster center. When the number of clusters reaches k + 1, phase
i ends and the current set of k + 1 clusters along with di+1 are used as the input for
the (i + 1)st phase.

All that remains to be specified about the algorithm is the initialization. The
algorithm waits until k + 1 points have arrived and then enters phase 1 with each
point as the center of a cluster containing just itself, and with d1 set to the distance
between the closest pair of points. It is easily verified that the invariants hold at the
start of phase 1. The following lemma shows that the clusters at the end of the ith
phase satisfy the invariants for the (i + 1)st phase.

INCREMENTAL CLUSTERING 1427

Lemma 3.4. The k + 1 clusters at the end of the ith phase satisfy the following
conditions:

1. The radius of the clusters is at most αdi+1.
2. The pairwise distance between the cluster centers is at least di+1.
3. di+1 ≤ opt, where opt is the diameter of the optimal clustering for the

current set of points.

Proof. We have k+1 clusters at the end of the phase since that is the terminating
condition for a phase. From Lemma 3.3, the radius of the clusters after the merging
stage is at most αdi+1. When adding new points, the algorithm ensures that the radius
bound is respected. From Lemma 3.2, the distance between the clusters centers after
the merging stage is di+1, and a new cluster is created only if a request point is at
least di+1 away from all current cluster centers. Therefore, the cluster centers have
pairwise distance at least di+1. Since at the end of the phase we have k + 1 cluster
centers that are di+1 apart, the optimal clustering is forced to put at least two of
them in the same cluster. It follows that opt ≥ di+1.

We make the following observations. The algorithm ensures the invariant that
di ≤ opt at the start of phase i. The radius of the clusters during phase i is at
most αdi+1. Therefore, the performance ratio at any time during the phase is at
most 2αdi+1/opt ≤ 2αβdi/opt ≤ 2αβ. We choose α = β = 2; note that this choice
satisfies the condition that α/(α − 1) ≤ β. This leads to the following performance
bound, which can be shown to be tight.

Theorem 3.5. The doubling algorithm has performance ratio 8 in any metric
space.

We give a simple example showing that our analysis of the doubling algorithm
is tight. Here we assume that k ≥ 3. The input sequence consists of k + 3 points,
p1, . . . , pk+1, pk+2, pk+3, given in that order. The points p1, . . . , pk+1 form a uniform
metric space with distance 1. The points pk+2 and pk+3 are distance 4 from the
points p1, . . . , pk+1 and are distance 8 from each other. It is easy to ensure that both
pk+2 and pk+3 will be added to the same cluster during the update stage of phase 1,
and thus the diameter of the largest cluster formed by the doubling algorithm is 8.
However, an optimum clustering can achieve diameter 1 by having pk+2 and pk+3 in
their own clusters and the rest of the points in a single cluster of diameter 1.

An examination of the proof of the preceding theorem shows that the radius of
the clusters is within a factor of 4 of the diameter of the optimal clustering, leading
to the following result.

Corollary 3.6. The doubling algorithm has performance ratio 8 for the radius
measure.

A simple modification of the doubling algorithm, in which we pick the new cluster
centers by a simple left-to-right scan, improves the ratio to 6 for the case of the line.

While the obvious implementation of this algorithm appears to be inefficient, we
can establish the following time bound, which is close to the best possible.

Theorem 3.7. The doubling algorithm can be implemented to run in O(k log k)
amortized time per update.

Proof. First of all, we assume that there is a black box for computing the distance
between two points in the metric space in unit time. This is a reasonable assumption
in most applications, and in any case even the static algorithms’ analysis requires
such an assumption. In the information retrieval application, the documents are
represented as vectors and the black-box implementation will depend on the vector
length as well as the exact definition of distance.

1428 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

We now show how the doubling algorithm may be implemented so that the amor-
tized time required for processing each new update is bounded by O(k log k). We
maintain the edge lengths of the complete graph induced by the current cluster cen-
ters in a heap. Since there are at most k clusters the space requirement is O(k2).
When a new point arrives, we compute the distance of this point to each of the cur-
rent cluster centers, which requires O(k) time. If the point is added to one of the
current clusters, we are done. If, on the other hand, the new point initiates a new
cluster, we insert into the heap edges labeled with the distances between this new
center and the existing cluster centers. For accounting purposes in the amortized
analysis, we associate log k credits with each inserted edge. We will show that it is
possible to charge the cost of implementing the merging stage of the algorithm to the
credits associated with the edges. This implies the desired time bound.

We can assume, without loss of generality, that the merging stage merges at least
two clusters. Let t be the threshold used during the phase. The algorithm extracts
all the edges from the heap which have length less than t. Let m be the number of
edges deleted from the heap. The deletion from the heap costs O(m log k) time. The
t-threshold graph on the cluster centers is exactly the graph induced by these m edges.
It is easy to see that the procedure described to find the new cluster centers using the
threshold graph takes time linear in the number of edges of the graph, assuming that
the edges are given in the form of an adjacency list. Forming the adjacency list from
the edges takes linear time. Therefore, the total cost of the merging phase is bounded
by O(m log k+m) = O(m log k) time. The credit of log k placed with each edge when
it is inserted into the heap accounts for this cost, completing the proof.

Finally, we describe a randomized doubling algorithm with significantly better
performance ratio. The algorithm is essentially the same as before, the main change
being in the value of d1, which is the lower bound for phase 1. In the deterministic
case we chose d1 to be the minimum pairwise distance of the first k + 1 points,
say x. We now choose a random value r from [1/e, 1] according to the probability
density function 1/r, set d1 to rx, and redefine β = e and α = e/(e − 1). Similar
randomization of doubling algorithms was used earlier in scheduling [41], and later in
other applications [10, 26].

Theorem 3.8. The randomized doubling algorithm has expected performance
ratio 2e ≈ 5.437 in any metric space. The same bound is also achieved for the radius
measure.

Proof. Let σ be the sequence of updates and let the optimal cluster diameter for
σ be γx for some γ ≥ 1; by the definition of x, the optimal value is at least x. Suppose
we choose d1 = rx for some r ∈ (0, 1]. Let ρr be the radius of the clusters created for
σ with this value of r. Using arguments similar to those in the proof of Theorem 3.5,
we can show that ρr is at most di+1 + αdi = ei+1d1/(e − 1), where i is the largest
integer such that di = ei−1d1 = ei−1rx ≤ opt = γx. Let i∗ be the integer such that

ei
∗−1 ≤ γ < ei

∗
and δ = γ/ei

∗
. Then ρr ≤ rexγ

(e−1)δ when r > δ, and ρr ≤ re2xγ
(e−1)δ when

r ≤ δ. Let X−
r and X+

r be indicator variables for the events [r ≤ δ] and [r > δ],
respectively. We claim that the expected value of ρr is bounded by

E[ρr] ≤
∫ 1

1/e

reγx(eX−
r + X+

r)

δr(e− 1)
dr

= opt

e

δ(e− 1)

∫ 1

1/e

(eX−
r + X+

r)dr

INCREMENTAL CLUSTERING 1429

= opt

eδ(e− 1)

δ(e− 1)
= eopt.

Therefore, the expected diameter is at most 2eopt.

Remark 3.9. The randomized version of the doubling algorithm can be converted
to a deterministic algorithm for the offline case which runs in O(1

εnk
2) time and has

a performance ratio of 4(1 + ε).

3.1. An oblivious clustering algorithm. In this section we describe an in-
cremental hierarchical clustering algorithm that does not need an a priori bound on
the number of clusters. From the hierarchy, given an integer k, we can obtain a k-
clustering of the points such that the diameter of the clustering is at most a factor of
8 times the optimum diameter for the given value of k.

For convenience, assume that we have an a priori upper bound on the maximum
distance between points, which we take to be 1. We maintain the current points in
a tree, where every point is a vertex of the tree. For convenience, we assume that
if a point is a vertex of the tree, then one of its children corresponds to the same
vertex. The root, at depth 0, is a single vertex. The vertices at depth i ≥ 1 are
points within distance 1/2i−1 of their parents, and all the vertices at depth i are at a
distance greater than 1/2i from each other.

Initially, we have a single point at the root, which also occurs as the only child,
the only child of this child, and so on; for conceptual clarity, we may assume that the
depth of the tree is infinite. Suppose we have a tree representing the points at some
stage, and a new point p comes in. Let i be the largest integer such that p is within
1/2i of some point q at depth i. Then p is added at depth i+ 1, with q as its parent,
with p as its only child, p as the only child of the child, and so on. So p is at depth
i+ 1 with parent within distance 1/2i as desired, and also the vertices representing p
at depth j ≥ i+ 1 are at a distance greater than 1/2j of other points at depth j. See
Figure 3.1 for an example.

It remains to indicate how we obtain the k clusters from the tree when k is given.
Let i be the greatest depth containing at most k points. These are the k cluster
centers. The subtrees of the vertices at depth i are the clusters. As points are added,
the number of vertices at depth i increases; if it goes beyond k, then we change i to
i − 1, collapsing certain clusters; otherwise, the new point is inserted in one of the
existing clusters.

Theorem 3.10. The algorithm that outputs the k clusters obtained from the
tree construction has performance ratio 8 for the diameter measure and the radius
measure.

Proof. Suppose the optimal diameter is 1/2i+1 < d ≤ 1/2i. Then points at
depth i are in different clusters, so there are at most k of them. Let j ≥ i be
the greatest depth containing at most k points. Then these are the cluster centers,
and the vertices in the corresponding subtrees are at a distance of the root within
1/2j + 1/2j+1 + 1/2j+2 + · · · ≤ 1/2i−1 < 4d. Hence the radius of the clusters is at
most 4d, and thus the diameter is at most 8d. This proof also implies that if the
optimal radius is r, the radius of the clusters output is at most 8r.

The randomization technique used in the randomized doubling algorithm can also
be applied here to get a better performance ratio (in expectation). The construction
of the tree described above used distance threshold 1/2i for depth i. Instead, we use
distance threshold r/ei for depth i, where r is chosen at random from the interval

1430 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

p1 p3

0.6
0.3

0.7
p5

p4

p2
0.80.75

0.55

p3 0.2

0.6

0.65

p1

p3
p2

p1

p0p0 p0

p4

p0

(c)(b)(a)

p2

p5

Fig. 3.1. Illustration of the oblivious clustering algorithm. The points are numbered according
to their order of arrival, and the distance between points is the minimum of 1 and the distance
induced by the weighted graph shown. (a) Tree after first point p0 arrives. (b) Tree after four
points. (c) Addition of p4 and p5. If k = 3, in (b), the clusters are centered around p0, p1, and p3;
in (c) there is a single cluster around p0.

[1, e], according to the probability density function 1/r. Note that the value r is
chosen once at the beginning of the tree construction. By performing an analysis very
similar to that for the randomized doubling algorithm, we can show that the expected
diameter of the k-clustering obtained from the tree is at most 2e ≈ 5.437 times the
optimal diameter. The same bound holds for the radius as well.

4. The clique partition algorithm. We now describe the clique algorithm,
which has performance ratio 6. This does not totally improve upon the doubling algo-
rithm since the new algorithm involves solving the NP-hard clique partition problem,
even though it is only on a graph with k + 1 vertices. Finding a minimum clique
partition is NP-hard even for graphs induced by points in the Euclidean plane [25],
although it is in polynomial time for points on the line. Since the algorithm needs to
solve the clique partition problem on graphs with k + 1 vertices, this may not be too
inefficient for small k.

Definition 4.1. Given an undirected unweighted graph G = (V,E), an l-clique
partition is a partition of V into V1, V2, . . . , Vl such that for 1 ≤ i ≤ l, the induced
graph G[Vi] is a clique. A minimum clique partition is an l-clique partition with the
minimum possible value of l.

The clique algorithm is similar to the doubling algorithm in that it also operates

INCREMENTAL CLUSTERING 1431

in phases which have a merging stage followed by an update stage. The invariants
maintained by the algorithm are different though. At the start of the ith phase we
have k + 1 clusters C1, C2, . . . , Ck+1 and a value di such that

1. the radius of each cluster Cj is at most 2di;
2. the diameter of each cluster Cj is at most 3di;
3. di ≤ opt.

The merging works as follows. Let di+1 = 2di. We form the minimum clique
partition of the di+1-threshold graph G of the cluster centers. The new clusters
are then formed by merging the clusters in each clique of the clique partition. We
arbitrarily choose one cluster from each clique and make its center the cluster center
of the new merged cluster. Let C ′

1, C
′
2, . . . , C

′
li

be the resulting clusters. In the rest
of the phase we also need to know which old clusters merged to form each of the new
clusters.

Lemma 4.2. After the merging stage, the radius of the new clusters is at most
2di+1 and the diameter is at most 3di+1.

Proof. Let Cj1 , Cj2 , . . . , Cjnj
be the clusters whose union is the new cluster C ′

j

and without loss of generality assume that the center of Cj1 was chosen to be the
center of C ′

j . Since the centers of Cj1 , Cj2 , . . . , Cjnj
induce a clique in the di+1-

threshold graph, the distance from the new center to each of the old cluster centers
is at most di+1. The radius of each of Cj1 , Cj2 , . . . , Cjnj

is at most 2di. Therefore it

follows that the new radius is at most di+1 +2di ≤ 2di+1 and the diameter is at most
2di + di+1 + 2di ≤ 3di+1.

During the update phase, a new point p is handled as follows. Let the current
number of clusters be m, where li ≤ m ≤ k. Recall that C ′

1, C
′
2, . . . , C

′
li

are the
clusters formed during the merging stage. If there exists j such that j > li and
d(p, c′j) ≤ di+1, or if j ≤ li and d(p, cjs) ≤ di+1 where Cjs is a cluster which merged
to form C ′

j , add p to the cluster C ′
j . If no such j exists, make a new cluster with p as

the center. The phase ends when the number of clusters exceeds k+ 1, or if there are
k + 1 clusters at the end of the merging phase.

The following lemmas show that the clusters at the end of phase i satisfy the
invariants for phase i + 1.

Lemma 4.3. The radius of the clusters at the end of the phase i is at most 2di+1

and the diameter of the clusters is at most 3di+1.

Proof. From Lemma 4.2, the radius of the clusters at the end of the merging
stage of phase i is at most 2di+1 and the diameter is at most 3di+1. We now argue
that these bounds are maintained during the update stage. If a point p is added to a
cluster Cj , j > li, it satisfies the condition d(p, c′j) ≤ di+1; hence the radius of such
a cluster is at most di+1, and hence the diameter is at most 2di+1. If p is added to
a cluster C ′

j , j ≤ li, then p satisfies the condition d(p, cjs) ≤ di+1 where cjs is the
center of a cluster that was merged to form the cluster C ′

j . The center c′j of C ′
j is at

a distance at most di+1 from the centers of all the clusters that were merged to form
C ′

j . Therefore p is at a distance 2di+1 from c′j . This shows the radius bound. For the
diameter bound, consider any two points p and q in the cluster C ′

j . There must be
cluster centers cjs and cjt of clusters that merged to form C ′

j such that d(p, cjs) ≤ di+1

and d(q, cjt) ≤ di+1. The diameter bound follows since d(cjs , cjt) ≤ di+1.

Lemma 4.4. At the end of phase i, di+1 ≤ opt.

Proof. Suppose di+1 > opt. Let S = {c1, c2, . . . , ck+1} be the cluster centers
at the beginning of the phase i. Note that the centers c′1, . . . , c

′
li

belong to S. Let
S′ = {c′j | j > li} be the set of cluster centers of the clusters which are formed

1432 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

in phase i after the merging stage. Since each center c′j in S′ started a new cluster,
d(c′j , p) > di+1 for all p ∈ S∪S′−{c′j}. Therefore, in the optimal solution, each center
in S′ is in a cluster which contains no center from S. This implies that the centers
in S are contained in at most li − 1 clusters of diameter di+1. This is a contradiction
since li was the size of the minimum clique partition of the di+1-threshold graph on
S.

Theorem 4.5. The clique algorithm has performance ratio 6 in any metric
space.

Proof. The diameter of the clusters during phase i is at most 3di+1, and we main-
tain the invariant that di ≤ opt at the start of the phase. Therefore the performance
ratio of the algorithm is at most 3di+1/di ≤ 6.

The analysis of the clique algorithm is tight, as shown by the following example.
We assume that k ≥ 4. The sequence consists of k+3 points p1, . . . , pk+1, pk+2, pk+3.
The first k points form a uniform metric space with distance 1. The point pk+1 is at
a distance 2 from p2 and distance 1 from pi for 2 ≤ i ≤ k. The point pk+2 has the
following properties: d(pk+2, p1) = 2, d(pk+2, pi) = 3 for 2 ≤ i ≤ k, d(pk+2, pk+1) = 4,
and d(pk+2, pk+3) = 6. The point pk+3 has the following properties: d(pk+3, p1) = 4,
d(pk+3, pi) = 3 for 2 ≤ i ≤ k, d(pk+3, pk+1) = 2, and d(pk+3, pk+2) = 6. After the
first k + 1 points are given the algorithm enters phase 1 with d1 = 1 and d2 = 2. In
the merging stage the first k + 1 points are merged into one single cluster since they
form a clique in the d2-threshold graph. It is easy to see that points pk+2 and pk+3

will be added to this cluster in the update stage, and the diameter of this cluster is
seen to be 6. There is, however, an optimal clustering that achieves diameter 1 for all
clusters: pk+2 and pk+3 are in their own clusters, p1 and pk+1 are in different clusters,
and the rest of the points can go either into the cluster containing p1 or into the one
containing pk+1.

Since the radius of the clusters is within 4 of the optimal diameter, we obtain the
following corollary.

Corollary 4.6. The clique algorithm has performance ratio 8 in any metric
space for the radius measure.

As in the case of the doubling algorithm, we can use randomization to improve the
bound. Let x be the minimum distance among the first k+1 points. The randomized
algorithm sets d1 = rx in phase 1 of the deterministic algorithm, where r is chosen
from [1/2, 1] according to the probability density function 1

r ln 2 . The analysis is similar
to that of Theorem 3.8 and we omit the details.

Theorem 4.7. The randomized clique algorithm has performance ratio 3
ln 2 ≈

4.33 in any metric space.

Corollary 4.8. The randomized clique algorithm has performance ratio 4
ln 2 ≈

5.77 for the radius measure in any metric space.

The special structure of the clusters in the clique algorithm can be used to show
that the performance ratio for the radius measure is better than 8 for the geometric
case. This is based on the following result in geometry, known as Jung’s theorem (see
[5, pp. 84–85]).

Proposition 4.9. Any convex set in Rd of diameter at most 1 can be circum-
scribed by a sphere of radius rd =

√
d/(2d + 2).

Theorem 4.10. The clique algorithm has performance ratio 4(1 + rd) for the
radius measure in Rd. This implies performance ratio 6 for d = 1, 6.3 for d = 2, and
6.83 asymptotically for large d.

Proof. Let ai be the maximum radius of the clusters of the algorithm in phase

INCREMENTAL CLUSTERING 1433

i and let a∗i be the radius achievable by an optimal clustering. We claim that ai ≤
di+1(1 + rd) = 2di(1 + rd). Trivially, we have that a∗i ≥ opti/2, where opti is the
optimal diameter achievable for points at the start of phase i. From the invariants of
the algorithm we have that di ≤ opti, and hence we get that ai ≤ 4a∗i (1 + rd).

Now we prove the claim by induction. Assuming that the claim is true in phase
i−1, we prove that it is true in phase i. In phase i let C ′

1, C
′
2, . . . , C

′
li

be clusters formed
in the merging stage. It is easy to see that any new cluster formed during the update
stage has radius at most di+1; hence we can focus on the clusters C ′

1, C
′
2, . . . , C

′
li
.

Without loss of generality consider C ′
1, which is formed by the merging of clusters

C1, C2, . . . , Cj from the start of the phase. Let ci be the center of Ci, 1 ≤ i ≤ j. Since
the clusters were merged, it follows that the diameter of the point set {c1, c2, . . . , cj}
is at most di+1. Hence their radius, by Proposition 4.9, is at most di+1rd. From
the invariants at the start of the phase, d(p, ci) ≤ 2di = di+1 for p ∈ Ci. Further,
any new point added to the cluster C ′

1 is at most a distance of di+1 from a point in
{c1, c2, . . . , cj}. It follows that the radius of the cluster C ′

1 throughout the phase is at
most di+1rd + di+1, which proves the claim.

5. Lower bounds. We present some lower bounds on the performance of incre-
mental clustering. The lower bounds apply to both diameter and radius measures,
but our proofs are given for the diameter case. The following theorem shows that
even for the simplest geometric space, we cannot expect a ratio better than 2.

Theorem 5.1. For k = 2, there is a lower bound of 2 and 2 − 1/2k/2 on the
performance ratio of deterministic and randomized algorithms, respectively, for incre-
mental clustering on the line.

Proof. Start with the three points 1, 2, 3. Two consecutive points are necessarily
merged, say 2 and 3. Add a new point at 4. Then 1 or 4 is merged with [2, 3]. This
gives diameter 2, while the optimum is 1. In fact, this construction can be repeated
to obtain n points 1, 2, . . . , n clustered into 1 and [2, n].

For the randomized lower bound, consider the instance in the preceding para-
graph. To convert this to a randomized lower bound, the adversary places the fourth
point at 0 or 4 with equal probability, and now the algorithm has probability 1/2 of
creating the wrong cluster (that is, with diameter 2). This gives a lower bound of 1.5.
For general k, the algorithm makes k/2 copies of the above scenario far enough from
each other that the above analysis applies locally. The probability that the algorithm
succeeds in creating clusters of diameter 1 on all k/2 copies is 2−k/2. This implies a
lower bound of 2 − 2−k/2.

In the case of general metric spaces, we can establish a stronger lower bound.
Theorem 5.2. There is a lower bound of 1+

√
2 ≈ 2.414 on the performance ratio

of any deterministic incremental clustering algorithm for arbitrary metric spaces.
Proof. Consider a metric space consisting of the points pij , 1 ≤ i, j ≤ 4, i �= j.

The distances between the points are the shortest path distances in the graph with the
following distances specified: d(pij , pji) = 1, and d(pij1 , pij2) =

√
2 for j1 �= j2. Let

Bi = {pij | 1 ≤ j ≤ 4, i �= j}. Note that the sets Bi, 1 ≤ i ≤ 4, partition the metric
space into 4 clusters of diameter

√
2. See Figure 5.1. Let A be any deterministic

algorithm for the incremental clustering problem. Let k = 6. Consider the clusters
produced by A after it is given the 12 points pij described above.

Case 1. Suppose the maximum diameter of A’s clusters is 1. Then A’s clusters
must be the 6 sets {pij , pji}. Now the adversary gives a point q such that d(q, pij) = 10
for 1 ≤ i, j ≤ 4. The optimal clustering is {q} and the sets B1, B2, B3, B4. The optimal
diameter is

√
2. We claim that the maximum diameter of A is at least 2 +

√
2. If the

1434 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

q

Case 2Case 1

2324

31

2112

32

The first 12 points

41 42

14

3443

13

Fig. 5.1. Lower bound instance. Solid and dashed lines show edges of length 1 and
√

2, respec-
tively. Dotted ellipses show potential clusters. New points inserted after the first batch of 12 points
are shown as smaller circles.

cluster that contains q contains any other point, then our claim is clearly true. If on
the other hand the cluster that contains q does not contain any other point, A must
have merged two of its existing clusters. Then the maximum diameter of A’s resulting
clusters is at least 2 +

√
2. Thus the performance ratio of A is at least 1 +

√
2.

Case 2. Suppose the maximum diameter of A’s clusters is greater than 1. Then
some cluster of A contains 2 points which are at least distance

√
2 apart. Let these

points be pwx and pyz, (w, x) �= (z, y). Now the adversary gives 6 points rij , 1 ≤
i < j ≤ 4, such that d(rij , pij) = d(rij , pji) = 1. The optimal clustering consists of
the 6 sets {rij , pij , pji}. The optimal diameter is 1. We claim that the maximum
diameter of A’s clusters must be at least 1+

√
2. Note that d(ri1j1 , pi2j2) ≥ 1+

√
2 for

(i2, j2) �= (i1, j1), (i2, j2) �= (j1, i1). Also d(ri1j1 , ri2j2) ≥ 2 +
√

2 for (i1, j1) �= (i2, j2).
If A puts any two rij in the same cluster, our claim is clearly true. If all the rij are
in separate clusters, each of the 6 clusters must contain one of them. Also one of
the 6 clusters, say C, must contain both the points pwx and pyz. Then C must have
diameter at least 1+

√
2, since the rij in C must be at a distance at least 1+

√
2 from

one of pwx and pyz. Hence the performance ratio of A is at least 1 +
√

2.

This proves a lower bound of 1+
√

2 on the performance ratio of any deterministic
incremental algorithm.

Finally, we can improve the randomized lower bound slightly for the case of
arbitrary metric spaces.

INCREMENTAL CLUSTERING 1435

Theorem 5.3. For any ε > 0 and k ≥ 2, there is a lower bound of 2 − ε on the
performance ratio of any randomized incremental algorithm.

Proof. We use Yao’s technique and show a lower bound on deterministic algo-
rithms on an appropriately chosen distribution. Let A be a deterministic algorithm for
incremental clustering. The distribution on inputs is as follows. Initially, the adver-
sary provides n points P1, P2, . . . , Pn such that the distance between any two of them
is 1. Then the adversary partitions the n points into k disjoint sets S1, S2, . . . , Sk at
random, such that all partitions are equally likely. Finally the adversary provides k
points Q1, Q2, . . . , Qk, such that d(Qi, Pj) = 1 if Pj ∈ Si, d(Qi, Pj) = 2 if Pj �∈ Si,
d(Qi, Qj) = 3. Now, the diameter of the optimal solution for any input in the distribu-
tion is 1, obtained by constructing the k clusters Si∪{Qi}. However, the incremental
algorithm can produce a clustering with diameter 1 only if the clusters it produces
after it sees points P1, P2, . . . , Pn are precisely the sets Si (selected at random by
the adversary). Let Xk(n) be the number of ways to partition the n points into k
sets. Then the probability that the incremental algorithm produces a clustering of
diameter 1 is at most p = 1/Xk(n). With probability at least 1 − p, the incremental
algorithm produces a clustering of diameter at least 2. Thus the expected value of
the diameter of the clustering produced is at least 2 − p. Hence the expected value
of the performance ratio is at least 2 − p. By choosing n suitably large, Xk(n) can
be made arbitrarily large, and hence p can be made arbitrarily small, in particular
smaller than ε for any fixed ε > 0.

For the radius measure we have the following theorem.
Theorem 5.4. For the radius measure, no deterministic incremental clustering

algorithm has a performance ratio better than 3 and no randomized algorithm has a
ratio better than 3 − ε for any fixed ε > 0.

Proof. We first consider the randomized case. The instances are very similar to
the ones used in the proof of Theorem 5.3. The only difference is that d(Qi, Pj) = 0.5
if Pj ∈ Si and d(Qi, Pj) = 1.5 if Pj �∈ Si. The optimal clusters are Si ∪ {Qi} for
1 ≤ i ≤ k and each of them has a radius of 0.5. Any other clustering has radius at
least 1.5 and the algorithm has a probability of (1−1/Xk(n)) of having such a cluster.

The instance used above can be adapted easily to show a bound of 3 for the
deterministic case; we leave the details to the reader.

6. Dual clustering. We now consider the dual clustering problem: for a se-
quence of points p1, p2, . . . , pn ∈ �d, cover each point with a unit ball in �d as it
arrives, so as to minimize the total number of balls used. In the static case, this
problem is NP-complete and a PTAS is achievable in any fixed dimension [31]. We
note that in general metric spaces, it is impossible to achieve any bounded ratio (for
example, consider the uniform metric space).

Our algorithm’s analysis is based on a theorem from combinatorial geometry
called Roger’s theorem [46] (see also [43, Theorem 7.17]), which says that Rd can
be covered by any convex shape with covering density O(d log d). Since the volume
of a radius 2 ball is 2d times the volume of a unit-radius ball, the number of balls
needed to cover a ball of radius 2 using balls of unit radius is f(d) = O(2dd log d).
We first describe an incremental algorithm which has performance ratio f(d). We
also establish an asymptotic lower bound of Ω(log d

log log log d); for d = 1 and 2, our proof
yields lower bounds of 2 and 4, respectively.

Theorem 6.1. For the dual clustering problem in �d, there is an incremental
algorithm with performance ratio O(2dd log d).

Proof. Our incremental algorithm maintains a set C of centers which is a subset

1436 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

of the points that have arrived so far; initially, C = ∅. Define the range R(p) of a
center p to be the sphere of radius 2 about p. For any two centers p1 and p2, we
ensure that d(p1, p2) > 2. Associated with each center p is a set of points Γ(p) called
the neighbors of p. For convenience, we assume that p ∈ Γ(p). We ensure that all
neighbors of p lie in R(p). When a new point x is received, if x ∈ R(p) for some center
p, we add x to Γ(p), breaking ties arbitrarily. If no such center exists, x must be at a
distance greater than 2 from all the existing centers. In this case, we make x a new
center and set Γ(x) = {x}.

From Roger’s theorem on packing density, a sphere of radius 2 in �d can be
covered by f(d) = O(2dd log d) spheres of radius 1. When a new center p is created,
we fix a set of spheres S1(p), S2(p), . . . , Sf(d)(p) which cover R(p). Whenever a point
x is added to Γ(p), if it is not already covered by some previously placed sphere, we
add the sphere Sr(p), where r is any value such that x ∈ Sr(p). Note that such a
sphere must exist as x ∈ R(p) and the spheres S1(p), S2(p), . . . , Sf(d)(p) cover R(p)
completely.

Since no two centers can be covered by a sphere of unit radius, any solution must
use a separate sphere to cover each center. Hence, the number of centers is a lower
bound for the number of spheres used by the optimal offline algorithm. For each
center p, the incremental algorithm uses at most f(d) spheres to cover the points
in Γ(p). Hence, the performance ratio of the incremental algorithm is bounded by
f(d) = O(2dd log d).

Theorem 6.2. For the dual clustering problem in �d, any incremental algorithm
must have performance ratio Ω(log d

log log log d).

Proof. The idea is as follows. At time t, when t points have been given by the
adversary, it will be the case that the points p1, . . . , pt can be covered by a ball of
radius Rt < 1. Then the adversary will find a point pt+1 lying outside the t unit balls
laid down by the algorithm so as to minimize the radius Rt+1 of the ball required to
cover all t + 1 points and present that as a request. The game terminates when, at
some time k+1, we have for the first time that Rk+1 > 1. Clearly, k is a lower bound
on the performance ratio since the points p1, . . . , pk can be covered by a ball of radius
Rk ≤ 1, and the algorithm has used k balls up to that point. It remains to analyze
the worst-case growth rate of Rt as a function of t. Note that R1 = 0 and R2 = 1/2.

Let αd denote the volume of a unit ball in �d. At time t, let Dt be any ball of
radius (at most) Rt that covers the points p1, . . . , pt. For some δt to be specified later,
define the ball D∗

t as a ball with the same center as Dt and with radius Rt + δt. We
will choose δt such that the volume of D∗

t is at least tαd, implying that the current t
unit balls placed by the algorithm cannot cover the entire volume of D∗

t . This would
imply that there is a choice of a point pt+1 inside D∗

t which is not covered by the
current t balls. It is also clear that the new set of t+ 1 points now can be covered by
a ball of radius at most Rt + δt/2, implying that

Rt+1 = Rt +
δt
2
.

Determining the value of δt is easy, since we have the inequality

αd(Rt + δt)
d > tαd

from the requirement that the ball Dt have volume equal to that of t unit balls. Now
let Rt = 1− εt. Substituting in the above equations, we obtain that δt = 2(εt − εt+1)

INCREMENTAL CLUSTERING 1437

and hence Rt + δt = 1 + εt − 2εt+1. Therefore

αd(1 + εt − 2εt+1)
d > tαd,

which implies that

ln(1 + εt − 2εt+1) >
ln t

d
.

Note that εt − 2εt+1 < 1. Using the fact that ln(1 + x) > x/2 for x < 1, we see
that choosing εi such that

εt − 2εt+1

2
=

ln t

d

will satisfy our requirements. Unfolding the recurrence,

ε1
2t

− εt+1 =

t∑
i=1

ln i

d2t−i
=

t∑
i=1

ln i

d2t−i
≤

t∑
i=1

ln t

d2t−i
≤ 2 ln t

d
.

Noting that ε1 = 1, we obtain that εt+1 ≥ 2−t − 2d−1 ln t. The lower bound is the
smallest value of t for which εt+1 is negative. Let tmax be the largest value of t for
which

1

2t
− 2 ln t

d
≥ 0.

This implies that 2t+1 ln t ≤ d and hence

tmax = Ω

(
log d

log log log d

)
.

This gives the desired lower bound.

Appendix. t-diameter-greedy algorithm. We give a few preliminary results
on the t-diameter-greedy algorithm defined in section 2.

Theorem A.1. For k = 3, there is a lower bound of 3 on the performance ratio
of the diameter-greedy algorithm on the line.

Proof. We first show that diameter-greedy achieves a ratio of 3 for k = 3. Suppose
that the optimal clustering is [r, s], [t, u], [v, w] with max(s− r, u− t, w− v) = d. It is
sufficient to show that a merging of two out of four clusters does not create a cluster of
diameter greater than 3d. There are two cases: if t− s, v−u > d, then this algorithm
actually produces the optimal solution; conversely, if t − s ≤ d, then either the first
two out of four clusters are contained in [r, u] with u− r ≤ 3d or the last two out of
four clusters are contained in [v, w] with w − v ≤ d.

For the case k = 2, we will in fact show that diameter-greedy creates two intervals
whose radius (the 2-diameter) is at most the diameter of the optimal solution. Suppose
the two intervals obtained by the algorithm are [0, a] and [b, 1], with a < b. The
optimum diameter is achieved when a ≤ 1/2 ≤ b, in which case it is max(a, 1 − b).
The other case has a and b on the same side of 1/2, say b < 1/2. We claim that in
this case, there are no gaps greater than b between consecutive points. Consequently,
the two consecutive points x ≤ 1/2 ≤ y satisfy y − x ≤ b, and the optimum diameter
is d = max(x, 1 − y). The interval [0, a] has radius at most a < b ≤ x ≤ d as needed.
The interval [b, 1] has radius at most max(y− b, 1−y) ≤ max(x, 1−y) = d as needed.

1438 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

It remains to verify the claim that there are no gaps greater than b. If there is
such a gap, it must be inside [b, 1]. At some point, a merge crossing this gap was
performed. That is, we had three intervals [r, s], [t, u], [v, w] with t − s > b, and a
merge producing [r, u] was carried out. This can only happen if w − u > b. Thus, we
obtain two intervals [r, u] and [v, w] with b < (w − r)/2, v − r > b, and w − u > b.
We shall show that these three inequalities are preserved for the two current intervals
until the end of the algorithm. However, they are false at the end for the two intervals
[0, a] and [b, 1], a contradiction.

We show that the three inequalities are preserved. A new point z is added either
between the two intervals or outside the two intervals, say after w. If z is added after
w, then the resulting intervals are either [r, u] and [v, z], in which case the inequalities
still hold, or [r, w] and [z, z], which can only happen if z−w > b and so the inequalities
still hold. If z is added between the two intervals, say z ≤ (w + r)/2, and the two
resulting intervals are [r, z] and [v, w], then w − z ≥ (w − r)/2 > b, completing the
proof.

For k = 3, we give an example where a greedy algorithm based on diameter cannot
do strictly better than 3.

Theorem A.2. For k = 3, there is a lower bound of 3 on the performance ratio
of the diameter-greedy algorithm on the line.

Proof. The adversary gives the following sequence of points: 1 + ε, 2 + ε, 3, 4, 6 −
2ε, 4 − ε, 7 − 2ε. The optimal intervals are [1 + ε, 2 + ε], [3, 4], [6 − 2ε, 7 − 2ε], giving
diameter 1. However, when the first four points are introduced, the interval [2 + ε, 3]
is created by diameter-greedy; when 6− 2ε is added the interval [4, 6− 2ε] is created;
when 4− ε is added then the enlarged interval [2+ε, 4− ε] is created; and finally when
7− 2ε is added either [1+ ε, 4− ε] or [4, 7− 2ε] is created, for a factor of [3− 2ε].

The proof only gives a lower bound of 2 for the t-diameter-greedy algorithm
when t > 1, leaving open the possibility that these algorithms may perform better
than diameter-greedy. Indeed, we have the following result.

Theorem A.3. The 3-diameter-greedy algorithm has performance ratio 3 on the
line.

Proof. In fact, we show that it produces a clustering with 3-diameter at most
the optimal diameter, and the factor of 3 follows. Assume this holds before the last
two clusters are merged. Let I1, I2, . . . , Ik be the intervals in the optimal clustering,
with maximum diameter d. Let C1, C2, . . . , Ck+1 be the current clusters, each with
3-diameter at most d, of which two must be merged. If Ci starts in Ia and ends in
Ib, let xi = b− a; notice that x1 + · · · + xk+1 ≤ k − 1. We assume that if Ci ends in
Ib, then Ci+1 starts in Ib; otherwise, we could replace the argument in the k intervals
Ij by an argument either in the first b intervals I1, . . . , Ib if there are at least b + 1
clusters Ci in this region, or in the last k− b intervals Ib+1, . . . , Ik if there are at least
k−b+1 current clusters Ci in this region. Now, the bounds imply that for some i, we
have xi + xi+1 < 2. If xi = xi+1 = 0, then the merging of Ci and Ci+1 is contained
in a single interval Ij and has a diameter at most d. If say xi = 0 and xi+1 = 1, then
the gap G between the two consecutive intervals Ij and Ij+1 involved is at most d,
since Ci+1 has 3-diameter at most d, so the merger of Ci and Ci+1 has 3-diameter at
most d given by the 3-partition Ij , G, Ij+1. This completes the proof.

We comment briefly on the running time of this algorithm. In the above proof,
the 3-diameter of an interval may be replaced by an easily computed upper bound:
at the time of creation of interval [a, b], let [x, y] be the gap containing (a+ b)/2, and
let the upper bound be max(x − a, y − x, b − y). Maintaining the n points sorted in
a balanced tree, the running time is O(log n) for each of the n points inserted.

INCREMENTAL CLUSTERING 1439

Acknowledgments. We thank Pankaj Agarwal and Leonidas Guibas for helpful
discussions and for suggesting that we consider the dual clustering problem. We thank
Bernard Chazelle for pointing out reference [5].

REFERENCES

[1] M. S. Aldenderfer and R. K. Blashfield, Cluster Analysis, Sage, Beverly Hills, CA, 1984.
[2] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit, Local

search heuristic for k-median and facility location problems, in Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing, 2001, pp. 21–29.

[3] Y. Bartal, M. Charikar, and D. Raz, Approximating min-sum k-clustering in metric spaces,
in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp.
11–20.

[4] M. Bern and D. Eppstein, Approximation algorithms for geometric problems, in Approxima-
tion Algorithms for NP-Hard Problems, D. S. Hochbaum, ed., PWS, Boston, MA, 1996,
pp. 296–345.

[5] T. Bonnesen and W. Fenchel, Theorie der Konvexen Körper, Springer, Berlin, 1934; English
translation: BCS Associates, Moscow, ID, 1987.

[6] P. Brucker, On the complexity of clustering problems, in Optimization and Operations Re-
search, R. Henn, B. Korte, and W. Oletti, eds., Heidelberg, New York, 1977, pp. 45–54.

[7] F. Can, Incremental clustering for dynamic information processing, ACM Trans. Inform. Pro-
cess. Systems, 11 (1993), pp. 143–164.

[8] F. Can and E. A. Ozkarahan, A dynamic cluster maintenance system for information re-
trieval, in Proceedings of the 10th Annual International ACM SIGIR Conference, 1987,
pp. 123–131.

[9] F. Can and N. D. Drochak II, Incremental clustering for dynamic document databases, in
Proceedings of the 1990 Symposium on Applied Computing, IEEE Computer Society Press,
Los Alamitos, CA, 1990, pp. 61–67.

[10] S. Chakrabarti, C. Phillips, A. Schulz, D. B. Shmoys, C. Stein, and J. Wein, Improved
scheduling algorithms for minsum criteria, in Proceedings of the 23rd International Collo-
quium on Automata, Languages, and Programming, Springer, Berlin, 1996, pp. 646–657.

[11] M. Charikar, S. Guha, E. Tardos, and D. Shmoys, A constant-factor approximation algo-
rithm for the k-median problem, J. Comput. System Sci., 65 (2002), pp. 129-149.

[12] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan, Algorithms for facility
location problems with outliers, in Proceedings of the 12th Annual ACM-SIAM Symposium
on Discrete Algorithms, 2001, pp. 642–651.

[13] M. Charikar, L. O’Callaghan, and R. Panigrahy, Better streaming algorithms for cluster-
ing problems, in Proceedings of the 35th Annual ACM Symposium on Theory of Comput-
ing, 2003, pp. 30–39.

[14] M. Charikar and R. Panigrahy, Clustering to minimize the sum of cluster diameters, in
Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp.
1–10.

[15] B. B. Chaudhri, Dynamic clustering for time incremental data, Pattern Recognition Lett., 13
(1994), pp. 27–34.

[16] D. R. Cutting, D. R. Karger, J. O. Pederson, and J. W. Tukey, Scatter/gather: A cluster-
based approach to browsing large document collections, in Proceedings of the 15th Annual
International ACM SIGIR Conference, 1992, pp. 318–329.

[17] D. R. Cutting, D. R. Karger, and J. O. Pederson, Constant interaction-time scatter/gather
browsing of very large document collections, in Proceedings of the 16th Annual Interna-
tional ACM SIGIR Conference, 1993, pp. 126–135.

[18] W. F. de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani, Approximation schemes for
clustering problems, in Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, 2003, pp. 50–58.

[19] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley, New York,
1973.

[20] B. Everitt, Cluster Analysis, Heinemann Educational, London, 1974.
[21] C. Faloutsos and D. W. Oard, A Survey of Information Retrieval and Filtering Methods,

Technical report CS-TR-3514, Department of Computer Science, University of Maryland,
College Park, 1995.

[22] T. Feder and D. H. Greene, Optimal Algorithms for Approximate Clustering, in Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, 1988, pp. 434–444.

1440 M. CHARIKAR, C. CHEKURI, T. FEDER, AND R. MOTWANI

[23] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto, Optimal packing and covering in the
plane are NP-complete, Inform. Process. Lett., 12 (1981), pp. 133–137.

[24] W. Frakes and R. Baeza-Yates, eds., Information Retrieval: Data Structures and Algo-
rithms, Prentice-Hall, Englewood Cliffs, NJ, 1992.

[25] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, CA, 1979.

[26] M. Goemans and J. Kleinberg, An improved approximation ratio for the minimum latency
problem, in Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms,
1996, pp. 152–157.

[27] T. E. Gonzalez, Clustering to minimize the maximum intercluster distance, Theoret. Comput.
Sci., 38 (1985), pp. 293–306.

[28] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, Clustering data streams, in Pro-
ceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, 2000,
pp. 359–366.

[29] J. A. Hartigan, Clustering Algorithms, Wiley, New York, 1975.
[30] D. Hochbaum, Various notions of approximations: Good, better, best, and more, in Approxi-

mation Algorithms for NP-Hard Problems, D. S. Hochbaum, ed., PWS, Boston, MA, 1996,
pp. 346–446.

[31] D. S. Hochbaum and W. Maas, Approximation schemes for covering and packing problems
in image processing and VLSI, J. ACM, 32 (1985), pp. 130–135.

[32] D. S. Hochbaum and D. B. Shmoys, A best possible heuristic for the k-center problem, Math.
Oper. Res., 10 (1985), pp. 180–184.

[33] D. S. Hochbaum and D. B. Shmoys, A unified approach to approximation algorithms for
bottleneck problems, J. ACM, 33 (1986), pp. 533–550.

[34] S. Irani and A. Karlin, Online computation, in Approximation Algorithms for NP-Hard
Problems, D. S. Hochbaum, ed., PWS, Boston, MA, 1996, pp. 521–564.

[35] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Englewood Cliffs,
NJ, 1988.

[36] K. Jain and V. Vazirani, Approximation algorithms for metric facility location and k-Median
problems using the primal-dual schema and Lagrangian relaxation, J. ACM, 48 (2001), pp.
274–296.

[37] N. Jardine and C. J. van Rijsbergen, The use of hierarchical clustering in information
retrieval, Inform. Storage and Retrieval, 7 (1971), pp. 217–240.

[38] O. Kariv and S. L. Hakimi, An algorithmic approach to network location problems. I. The
p-centers, SIAM J. Appl. Math., 37 (1979), pp. 513–538.

[39] N. Megiddo and K. J. Supowit, On the complexity of some common geometric location
problems, SIAM J. Comput., 13 (1984), pp. 182–196.

[40] S. G. Mentzer, Lower Bounds on Metric k-Center Problems, manuscript, 1988.
[41] R. Motwani, S. Phillips, and E. Torng, Nonclairvoyant scheduling, Theoret. Comput. Sci.,

130 (1994), pp. 17–47.
[42] E. Omiecinski and P. Scheuermann, A global approach to record clustering and file organi-

zation, in Proceedings of the 3rd BCS-ACM Symposium on Research and Development in
Information Retrieval, 1984, pp. 201–219.

[43] J. Pach and P. K. Agarwal, Combinatorial Geometry, Wiley, New York, 1995.
[44] E. Rasmussen, Clustering algorithms, in Information Retrieval: Data Structures and Algo-

rithms, W. Frakes and R. Baeza-Yates, eds., Prentice-Hall, Englewood Cliffs, NJ, 1992,
pp. 419–442.

[45] C. J. van Rijsbergen, Information Retrieval, Butterworths, London, 1979.
[46] C. Rogers, A note on coverings, Mathematika, 4 (1957), pp. 1–6.
[47] G. Salton, Automatic Text Processing, Addison-Wesley, Reading, MA, 1989.
[48] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval, McGraw-Hill,

New York, 1983.
[49] P. Willett, Recent trends in hierarchical document clustering: A critical review, Inform.

Process. Management, 24 (1988), pp. 577–597.
[50] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compressing and Indexing

Documents and Images, Van Nostrand Reinhold, New York, 1994.

