
A Simple Algorithm for Finding Frequent
Elements in Streams and Bags

RICHARD M. KARP and SCOTT SHENKER
International Computer Science Institute and University of California,
Berkeley, California
and
CHRISTOS H. PAPADIMITRIOU
University of California, Berkeley, California

We present a simple, exact algorithm for identifying in a multiset the items with frequency more
than a threshold θ . The algorithm requires two passes, linear time, and space 1/θ . The first pass
is an on-line algorithm, generalizing a well-known algorithm for finding a majority element, for
identifying a set of at most 1/θ items that includes, possibly among others, all items with frequency
greater than θ .

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network
Protocols—database management

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Data stream, frequent elements

1. INTRODUCTION

In many applications, ranging from network congestion monitoring [Estan and
Varghese 2001; Pan et al. 2001] to data mining [Fang et al. 1998] and the
analysis of web query logs [Charikar et al. 2002], it is often desirable to identify
from a very long sequence of symbols (or tuples, or packets) coming from a
large alphabet those symbols whose frequency is above a given threshold. Such
analysis is sometimes called an “iceberg query” [Fang et al. 1998; Beyer and
Ramakrishnan 1999] or hot list analysis [Gibbons and Matias 1999]. Since
the amount of data is typically huge, it is important that the time and space
expended for this analysis be kept to a minimum; and it is sometimes desirable
(as in the networking application) that the analysis be done on-line, in one pass

This research was supported by NSF ITR Grant 0081698.
Authors’ addresses: International Computer Science Institute, 1947 Center Street, Berkeley, CA
94704; email: christos@cs.berkeley.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 0362-5915/03/0300-0051 $5.00

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003, Pages 51–55.

52 • R. M. Karp et al.

over the sequence from left to right (such a sequence is then termed a stream;
a bag is an ordered multiset each element of which can be accessed more than
once).

We are thus given a sequence x = (x1, . . . , xN) ∈ 6∗, where 6 is an alphabet
with n symbols, and a real number θ (the threshold) between zero and one. For
the intended class of applications, we can think that N À n À 1/θ . Let f x(a)
denote the number of occurrences of a in x. We wish to determine the subset
I (x, θ) ⊂ 6 of symbols defined as I (x, θ) = {a ∈ 6 : fx(a) > θN }.

We are interested in several performance criteria for both on-line and off-line
algorithms for this problem:

—Amortized time. This is the time required to process all of x, divided by the
length N of x.

—Worst-case time. This applies to on-line algorithms, and is the time required
to process an occurrence of a symbol, maximized over all occurrences in x.

—Number of Passes.
—Space.

Fang et al. [1998] address this problem in the bag (off-line) setting, and
devise certain sampling, hashing, and hybrid algorithms for it; their algorithms
use several passes over the data, and may result in false positives and false
negatives. On another front, Alon et al. [1996] show how to use sampling to
approximate the moments of the frequencies (thus detecting high-frequency
items without identifying them). See Gibbons and Matias [1999] for a survey
of work on this and similar problems.

It is easy to see that the output set I (x, θ) cannot contain more than 1/θ
symbols (proof: otherwise there are more than 1

θ
· θN = N occurrences of sym-

bols from I (x, θ) in x). However, we point out that determining I (x, θ) on-line
requires Ä(n) memory. This is of concern because we assume that nÀ 1/θ , and
memory is of paramount importance in the networking application. We develop
a simple on-line algorithm for determining a superset K of I (x, θ) with at most
1/θ symbols. Our algorithm requires constant worst-case time per symbol oc-
currence and O(1/θ) space. By a trivial second pass, this yields an off-line algo-
rithm, with the same performance characteristics, for finding precisely I (x, θ).

Concurrently with the acceptance of this article, we were informed of the
unpublished paper [Demaine et al. 2002], which contains essentially the same
algorithm presented here.

2. THE ALGORITHM

We start by establishing formally the rather obvious fact that no on-line al-
gorithm for computing I (x, θ) can have memory smaller than n. We leave the
precise model of computation unspecified, since the argument is purely infor-
mation theoretic. For the proof we need that N > 4n > 16/θ .

PROPOSITION 2.1. Any on-line algorithm for computing I (x, θ) needs in the
worst case Ä(n log(N/n)) bits.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Finding Frequent Elements • 53

PROOF. Consider the algorithm crossing the middle of a sequence x, and
suppose that no symbol so far has exceeded θN occurrences. Then we claim that
the algorithm must at that point have a memory extensive enough to remember
the precise tally of each symbol. Because otherwise, if the algorithm reaches the
same memory configuration in two computations on two half-sequences with
distinct combinations of tallies, say differing in their tally of a, there is a way
to complete the two sequences by the same second half so that a is in I (x, θ)
in one sequence, and not in the other. The algorithm must output the wrong
I (x, θ) in one of the two computations.

Hence, the algorithm must use memory with at least log |K | bits, where K
is the set of all tally combinations not exceeding θN , that is, the set of all
sequences of n integers between 0 and θN −1 adding to bN/2c. We must derive
a lower bound for |K |. Each sequence of tallies in K can be visualized as an
n+ 1-tuple {b0 = 0, b1, . . . , bn−1, bn = N + n} ⊆ {1, 2, . . . , N + n}, (the bi ’s being
the “boundaries”) where the tally of symbol ai is simply bi−bi−1−1. Consider the
particular sequence alternating between bN/2nc and dN/2ne. By increasing or
decreasing independently each of the bi ’s, for 1 ≤ i ≤ n− 1, by at most bN/4nc,
we obtain (2bN/4nc + 1)n−1 different sequences in K . Taking logarithms, it
follows that the algorithm uses memory of Ä(n log N

n) bits.

Hence, on-line algorithms need substantially more than 1/θ space to output
the 1/θ or fewer elements of I (x, θ). We now describe a simple algorithm that
identifies a set K of b1/θc symbols guaranteed to contain I (x, θ), using O(1/θ)
memory cells.

Our algorithm generalizes a well-known trick for finding a majority symbol
if it exists—that is, computing I (x, θ) when θ = .5: Find the occurrences of two
different symbols and eliminate them from the sequence. Continue eliminat-
ing pairs of distinct occurrences, until only one symbol remains (perhaps in
many copies). No other symbol can be a majority symbol, because every time
an occurrence of it was eliminated, the occurrence of another symbol was also
eliminated. The last symbol can then be tallied to test for majority.

Our algorithm generalizes this idea to θ < .5:

x[1]...x[N] is the input sequence
K is a set of symbols initially empty
count is an array of integers indexed by K
for i:= 1,...,N do
{if x[i] is in K then count[x[i]] := count[x[i]] + 1

else {insert x[i] in K, set count[x[i]] := 1}
if |K| > 1/theta then

for all a in K do
{ count[a] := count[a] - 1,
if count[a] = 0 then delete a from K}}

output K

THEOREM 2.2. A superset K of I (x, θ) with |K | ≤ 1/θ can be computed with
O(1/θ) memory and O(1) operations (including hashing operations) per occur-
rence in the worst case.

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

54 • R. M. Karp et al.

PROOF. Consider a symbol a that is not in K at the conclusion of the al-
gorithm. Each occurrence of a was eliminated together with at least 1/θ − 1
occurrences of other symbols, and so more than fx(a)/θ occurrences were elim-
inated altogether. It follows that f x(a)/θ < N , or f x(a) < θN . Correctness is
immediate.

Implementing K as a hash table, we need O(1/θ) memory. We also need O(1)
amortized operations per occurrence arrival, since there is a constant number
of operations per arrival if no deletions are involved and, if a deletion occurs,
the deletion of each occurrence can be charged to the time of its arrival.

A slightly more sophisticated data structure is needed to make this a worst-
case constant time algorithm; we sketch it next. The data structure needs to
maintain a set K and a count for each element of K , and support two operations:
Increment by one the count of a given element of K , and decrement by one the
counts for all elements of K . The set K is maintained again as a hash table, but
the counts are maintained implicitly in a linked list L = (v1, . . . , vc), where c is
the currently largest count. Each vj has a pointer pointing to a doubly linked
list of symbols (possibly empty), the set of symbols in K that have a count equal
to j . These symbol nodes are pointed to by the corresponding entries of the hash
table, and they each point back to vj . To increment the count of one of these
symbols by one, we remove it from vj ’s doubly linked list, and we insert it to
the one that is one above. If this list does not exist, that is, if j = c, extend
the list to vc+1. To decrement all counts by one, we just move the head of L
one up from v1 to v2, we delete v1, and garbage collect the doubly linked list of
symbols attached to it (these are the symbols whose counts were decremented
from 1 to 0).

Naturally, garbage collection can be done, as usual, in subsequent rounds,
a few cells at a time, thus maintaining constant time per arrival. There is one
slight complication: If in one of the next rounds an occurrence of one of the
symbols whose count was decremented from 1 to 0 arrives before the corre-
sponding cell of the data structure has been garbage collected, the absence of
v1 will tell the algorithm that the symbol is not currently in K . When the cell
corresponding to the symbol is removed, we also remove the symbol from the
hash table.

It is not hard to see that this data structure correctly maintains K and its
counts, and requires a constant amount of time per operation.

However, as described so far, this data structure requires space that is pro-
portional to 1/θ + c, where c is the largest count; this is a serious problem, for ex-
ample, if the sequence is aN . Our final modification of the data structure solves
this problem. We replace any subsequence of the list L, say vi, vi+1, . . . , vi+k for
some k > 1, where there are no symbols with counts i + 1, . . . , i + k − 1 (that
is, the symbols pointers out of vi+1, . . . , vi+k−1 are null) with a pointer from vi to
vi+k labeled with a field length, whose value is k. The worst-case space bound
becomes thus O(1/θ).

Once the set K is found in the first pass, with a second pass we can find the
tallies of all symbols in K , and then delete from K the symbols with tally less
than θN . The resulting set is I (x, θ).

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

Finding Frequent Elements • 55

COROLLARY 2.3. The set I (x, θ) can be computed with two passes in space
O(1/θ) and O(N) operations, including hashing operations.

Notice that, since our time bounds include hashing operations, they are,
strictly speaking, not worst-case bounds, as hashing has, in theory, a very un-
favorable worst-case performance.

ACKNOWLEDGMENTS

We want to thank the four reviewers for their constructive and helpful
comments.

REFERENCES

ALON, N., MATIAS, Y., AND SZEGEDY, M. 1996. The space complexity of approximating the frequency
moments. In Proceedings of the ACM Symposium on Theory of Computing. ACM, New York.

BEYER, K. S. AND RAMAKRISHNAN, R. 1999. Bottom-up computation of sparse and iceberg cubes.
In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM,
New York.

CHARIKAR, M., CHEN, K., AND FARACH-COLTON, M. 2002. Finding frequent items in data streams. In
ICALP 2002. Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, Germany, 693–
703.

DEMAINE, E. D., MUNRO, J. I., AND LOPEZ-ORTIZ, A. 2002. Frequency estimation of internet packet
streams with limited space. In European Symposium on Algorithms (ESA). Lecture Notes in
Computer Science, Springer-Verlag, Heidelberg, Germany.

ESTAN, C. AND VARGHESE, G. 2001. New directions in traffic measurement and accounting. In
Proceedings of the SIGCOMM Internet Measurement Workshop. ACM, New York.

FANG, M., SHIVAKUMAR, N., GARCIA-MOLINA, H., MOTWANI, R., AND ULLMAN, J. 1998. Computing ice-
berg queries efficiently. In Proceedings of the 24th International Conference on Very Large Data
Bases, VLDB. Morgan-Kaufmann, San Mateo, Calif., 299–310.

GIBBONS, P. B. AND MATIAS, Y. 1999. Synopsis data structures for massive data sets. In DIMACS:
Series in Discrete Mathematics and Theoretical Computer Science: Special Issue on Eternal
Memory Algorithms and Visualization, vol. A. AMS, Providence, R.I., 39–70.

PAN, R., BRESLAU, L., PRABHAKAR, B., AND SHENKER, S. Approximate fairness through differential
dropping. preprint, 2001.

Received December 2001; revised June 2002; accepted September 2002

ACM Transactions on Database Systems, Vol. 28, No. 1, March 2003.

