1 Social Networks

- Detecting Triangles
- Finding dense subgraphs
- Community detection

2 Find Dense Component in Graph

2.1 Problem Definition

Given a graph \(G(V, E) \), find a subset \(S \subseteq V \) such that the ratio \(\frac{|E(S)|}{|S|} \) is maximized, where \(E(S) = \{(u, v) | (u, v) \in E, u, v \in S \} \). Or in other words:

\[
S = \arg \max_{S \subseteq V} \frac{|E(S)|}{|S|}.
\]

2.2 Charikar Greedy Algorithm

This problem can be solved optimally in polynomial time, but it is too slow on large graphs. If we do not need exact solution, there is a 2-approx greedy algorithm that runs in linear time. Ref: Moses Charikar, APPROX 2000, [link]

2.2.1 Algorithm

The algorithm maintains a subset \(S \) of vertices. Initially \(S \leftarrow V \). In each iteration, the algorithm identifies \(i_{\text{min}} \), the vertex of minimum degree in the subgraph induced by \(S \). The algorithm removes \(i_{\text{min}} \) from the set \(S \) and moves on to the next iteration. The algorithm stops when the set \(S \) is empty. Of all the sets \(S \) constructed during the execution of the algorithm, the set \(S \) maximizing density is returned as the output of the algorithm.

2.2.2 Pseudo code

- \(S \leftarrow V \)
- \(\text{SOL} = V \)
- While \(S \neq \emptyset \)
 - \(v \leftarrow \) a vertices in \(S \) whose degree in \(G[S] \) (subgraph induced by \(S \)) is minimized
- Remove v from S
- If density of $G[S] > G[SOL]$
 * $SOL \leftarrow S$

2.2.3 Analysis

- Let e^* be the first node we delete from S^*, degree of this node $\geq \lambda$
- \Rightarrow s nodes have deg $\geq \lambda$
- \Rightarrow # edges $\geq \frac{\lambda^2}{2}$
- \Rightarrow density $\geq \frac{\lambda}{2}$

2.3 LP formulation

x_u is an indicator variable, 0 indicating it not in S, $\frac{1}{|S|}$ if it is in S. y_e indicating an edge $e = (u,v)$ in S or not. It is $\frac{1}{|S|}$ if $u,v \in S$, and 0 otherwise. The target function then is

$$\frac{1}{|S|} \cdot |\{ \text{of edges in } S \}| = \frac{|E(S)|}{|S|}$$

2.3.1 LP formulation

$$\max \sum_e y_e$$

Subject to

$y_e \leq x_u, \ y_e \leq x_v \ \forall e = (u,v)$

$$\sum_{v \in V} x_v = 1$$

$0 \leq y_e \leq 1$

$0 \leq x_v \leq 1$

3 Counting Triangles

Count the number of triangles in a graph

3.1 Number of Triangles in a Random graph

- m edges, n nodes.
- Probability that there is an edge between a certain pair of vertices:

$$p = \frac{1}{2} \cdot \frac{m}{n(n-1)} = \left(\frac{2m}{n^2} \right)$$

- Expected number of triangles:

$$\binom{n}{3} \cdot p^3 \simeq \left(\frac{1}{6} n^3 \right) \cdot p^3$$

- Plugging in p:

$$\frac{1}{6} \cdot n^3 \cdot \frac{8m^3}{n^6} = \frac{4}{3} \left(\frac{m}{n} \right)^3$$
3.2 Algorithm

- count ← 0
- For every edge \((u, v)\), suppose \(\text{deg}(u) < \text{deg}(v)\) with out loss of generality
 - For \(w\) in neighbor list of \(u\)
 * If \(w\) is a neighbor of \(v\), then \(\text{count}^+ = 1\)

3.3 Arboricity

Arboricity is a measure of how sparse a graph is. The arboricity \(\alpha\) of a graph is defined as

\[
\max_{S \subseteq V} \left[\frac{E(S)}{|S| - 1} \right].
\]

Another closely related concept is degeneracy, which is defined as the smallest value \(d\) such that every subgraph has a vertex of degree at most \(d\). For every graph, \(\alpha \leq d \leq 2\alpha + 1\), so degeneracy and arboricity are of the same order, or \(d = O(\alpha)\).

For social graph of even millions of nodes, arboricity is pretty small, about 100-300. As a special case, any planar graph has arboricity at most 3. One fact about arboricity is as follows:

\[
\sum_{(u,v) \in E} \min(\text{deg}(u), \text{deg}(v)) = O(\alpha \cdot m).
\]

3.4 Time Analysis

For every edge \((u, v)\), the time is \(\min(\text{deg}(u), \text{deg}(v))\). So the total time complexity of the algorithm above is

\[
\sum_{(u,v) \in E} \min(\text{deg}(u), \text{deg}(v)) = O(\alpha \cdot m).
\]