
Lecture Note 2

Material covered today is from Chapter 1 and chapter 4

1 Bonferroni Principle

1.1 Idea

Get an idea the frequency of events when things are random

• 1 billion = 109

• Each person has a 1% chance to stay in a hotel

• Each hotel has 100 single rooms

• 1/100 * 109: #people staying in hotels today

• #hotels = 1/100 * 1/100 * 109 = 105, or 100,000

• Sample a window of 1000 days

1.2 Want

Suspected terrorists meet and stay in the same hotel twice in the 1000 day period. How many such
events might we expect? In other words, we want to identify a pair of persons (A, B) who stay at
the same hotel on two different days d1, d2.

1.2.1 Probability

• Pr[A stays at a hotel on d1] = 1
100

• Pr[B stays at a hotel on d1] = 1
100

• The probability that they both visit on d1 is 1
100 ·

1
100 = 10−4

• The probability that they stay at the same hotel: 10−4 · 10−5

• It happens on both d1 and d2: p = (10−4 · 10−5)2

1.2.2 Number of events

• #ways to select a pair of individuals is
(
n
2

)
= n(n−1)

2 ' 1
2 · n

2

• #choices for (A,B, d1, d2) ' 1
2 · n

2 × 1
2 · d

2

• Final answer 1
2 · n

2 × 1
2 · d

2 × p = 1
4 × 106
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1.2.3 Exercise

What if #days raised to 2000?

2 How do you sample when you do not know the size of population

2.1 Reservoir Sampling

2.2 Algorithm

Go to the first house, and we need to pick it with probability 1 and call it our sample. If there is
no more house, we report this house as our answer. If there are still more houses, we continue and
pick the second house with probability 1/2, call it our sample, kicking out the first house. If there
is no more house, we report our sample. Otherwise, we will keep going. For the k-th house, we pick
it with probability 1/k, and replace the existing choice.

2.3 Analysis

We prove that all elements got chosen with equal probability (which is weaker than what Reservoir
Sampling actually provices) by induction. Where there is only one house, we select with probability
100%, so the claim is true when n = 1. Suppose the claim is true for n houses, we now prove it also
works for n+ 1. According to our assumption, before seeing the (n+ 1)-th house, each house from
1 to n will have 1

n probability of being our sample. Upon seeing the new house, we will select it
with probability 1

n+1 , which means it will be our sample with probability 1
n+1 . On the other hand,

with probability n
n+1 , the original sample will persist. So the probability of a certain house from 1

to n persist to be our sample would be 1
n ×

n
n+1 = 1

n .

2.4 Reservoir Sampling Multiple items

• Goal: pick p items randomly out of n items.

• No knowledge of n.

• Add new item with probability p
n . If we end up not adding this new item, we do nothing. If

this item gets chosen, one of our old samples will be kicked out uniformly at random to make
space for the new item.

2.5 Property of Reservoir Sampling

When selecting a single item, Reservoir Sampling guarantees that every item has the same chance
of being chosen. However, when we pick more than one item, Reservoir Sampling provides more
than that. It guarantees that every subset is chosen with same probability

2.5.1 What does it mean?

• We have A, B, C, D. p = 2, n = 4, and our algorithm is as follows:

– Toss a coin, return (A, B) if we see head, and (C, D) otherwise.

• Each letter will be sampled with probability 1/2, but we will never see (A, C).

• So Reservoir Sampling is a bit stronger
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3 Sampling from a Stream

We want to store 1
10 -th of the stream for analysis

4 Hash function

4.1 A common hash functin

h(x) = (ax+ b mod p), where p is a prime.

4.1.1 Bad example

h(x) = x mod B, where B = 10. Then hash even numbers will always get even numbers

4.2 An obvious approach

Generate a random number 0-9, save the query if it is 0.

4.2.1 Bad example

Fails to answer the following query: among all the different queries, what fraction are duplicate
queries?

• Suppose a user has issued s search queries one time and d search queries twice, and no queries
more than twice. We will have s+ 2d queries in total.

• Then the correct answer would be d
s+d , since there are s + d different queries, and d have

duplicates.

• If we use the previous algorithm, we would get

– d
100 will appear twice: only queries that have duplicates will ever appear twice. Further
more, it will appear twice if and only if both got sampled. The probability that both
queries got sampled is 1

d . With d queries that have duplicates, we would expect d
100 such

appearances.

– Of the d queries with duplicates, 18d
100 will appear exactly once. Either only the first query

got sampled, or only the second query got sampled. So the probability that a certain
duplicate query appear exactly once is 1

10×
10−1
10 + 10−1

10 ×
1
10 = 18

100 . So the total expected
number would be 18d

100 .

– In all, we have d/100
s/100+19d/100 = d

10s+19d .

4.3 Use hash to sample 1/10 of the users

Use h(user), and select the set {u|h(u) = 0}.

4.4 Algorithm

Use a hash function on user id (so that if a user come again, we will know whether he was previously
sampled or not). Sample user when hash to 0. By this method, we can guarantee that each user is
sampled with probability 1/10.
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5 Bloom Filters

Goal is to answer membership queries in S.

• If x ∈ S, always say yes

• If x /∈ S, might say yes (with small probability of error)

5.1 Example

• 1 billion items, |S| = m

• Hash table a of size n << m

• y different values to insert

• When some value v come, change a[h(v)] to 1

• When asked if a certain value v is in S, answer yes if and only if a[h(v)] is 1

5.2 Analysis

What is the chance that a certain cell in a is 0?

• Suppose we have y darts and x targets

• Probability a single dart does not touch a specific entry:

–
(
x−1
x

)
=

(
1− 1

x

)
• Probability that all darts (we have y darts) miss this entry:

–
(
1− 1

x

)y
=

(
(1− 1

x)
x
) y

x = e−
y
x for large x.

– If we have x = 8× 109, y = 109, then probability an element is hit is 1− e−1/8 ' 0.1175

5.3 What if we have k hash functions?

Suppose |S| = m, hash function is of n cells, and we have k hash functions.

• y = km, n = x

• On seeing v, we set a[hi(v)] to 1, for all hash function h1, . . . , hk.

• When querying v, we answer yes if and only a[hi(v)] = 1 is true for all k hash functions.

• Chance that a certain cell in a is 0: e−
km
n

• Chance that we get false postive, i.e. a value v is not in S, but we thought it is in:
(
1− e−

km
n

)k
.

• If k = 2, n = 10 ·m, y = k ·m

– The probability is:
(
1− e−

1
5

)2
' 0.0329.
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6 Count Min Sketch

Want to count the frequency of number.

6.1 Algorithm

• Initialize an array a with 0

• When a number x come, use 2 hash functions h1, h2, and increase a[h1(x)] and a[h2(x)]

• When asked the frequency of x, answer min{a[h1(x)], a[h2(x)]}.

• truth ≤ estimate ≤ (1 + ε) truth, with high probability

7 Verify matrix multiplication

7.1 Freivald’s Algorithm

To check if A = B · C, check if Ar = B · (C · r) for random binary vector r.

8 Closest Pair

Instead of O(N logN), we can get expected running time O(N) using randomization (answer is
always correct, but might take longer) [Rabin, and independently Khuller & Matias link]
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