1 Streaming

1.1 Computing Frequency Moments

- \(n \) = length of stream
- \(N \) = size of alphabet

1.1.1 Definition of Frequency Moments

\(k \)-th moment is \(\sum_{X_i \in X} (m_i)^k \), where \(m_i \) is the frequency of \(X_i \) in \(S \).

1. Example

- Stream \(S_1 \): a, b, a, c, a, d, a, c
- Stream \(S_2 \): b, c, d, a, a, a, a, a
- \(k = 0 \): \(4^0 + 1^0 + 2^0 + 1^0 = 4 \) (\(S_1 \)). \(k = 0 \) would mean distinct objects
- \(k = 1 \): \(4^1 + 1^1 + 2^1 + 1^1 = 8 \) (\(S_1 \)). \(k = 1 \) would mean total length of stream
- \(k = 2 \): \(4^2 + 1^2 + 2^2 + 1^2 = 16 \), (\(S_1 \)).
- \(k = 2 \): \(5^2 + 1^2 + 1^2 + 1^2 = 28 \), (\(S_2 \)).

1.2 Finding Second Moments

- \(\text{Ans} = n(2X(i).\text{count} - 1) \), where \(X(i).\text{count} \) is the number of occurrences of element \(X(i) \) in positions \(i, i+1, \cdots, n \).

1. Example: a, b, c, b, d, a, c, a, a, b, d, c, a, a, b

- \(n = 15 \)
- True answer
 - \(m_a = 5, m_b = 4, m_c = 3, m_d = 3 \)
 - \(25 + 16 + 9 + 9 = 59 \)
- Take a look at the underlined letters
 - c.count = 3, d.count = 2, a.count = 2
 - c: 15 * (2 * 3 - 1) = 75
 - c: 75, d: 45, a: 45. So average is 55.
2. Algorithm: Imagine we try all choices for \(i = 1, \ldots, n \), take average.
\[
\sum m_i^2 = \frac{1}{n} \sum_{i=1}^{n} n(2X(i).\text{count} - 1)
\]

3. Correctness: Denote the right hand side of the previous equation with \(\text{Ans} \), and we want to prove \(E[\text{Ans}] = \sum m_i^2 \):

\[
E[\sum_{\text{distinct } v} m_v^2] = E[\sum_{\text{distinct } v} \sum_{j=1}^{m_v} (2j - 1)]
\]
\[
= E[\sum_{\text{distinct } v} (2m_v - 2j + 1)]
\]
\[
= E[\sum_{i} 2X(i).\text{count} - 1]
\]
\[
= nE[2X(i).\text{count} - 1]
\]

Note for the \(j \)-th occurrence of a certain value \(v \) at location \(i \), \(m_v - j + 1 \) is the number of occurrences of this element in position \(i, i+1, \ldots, n \), in other words, this equals to \(X(i).\text{count} \). So \(2m_v - 2j + 1 = 2X(i).\text{count} - 1 \).

1.3 Finding majority elements

1.3.1 Find the element that appears more than half (when there is no such element, there is no guarantee on the output)

Suppose the stream \(S = X(1), \ldots, X(n) \). We use \(v \) to denote our candidate, and initialize it with some special symbol NULL, and \(\text{count} = 0 \) to denote its count

1. Algorithm

 - For \(i := 1 \) to \(n \) do
 - If \(v = \text{NULL} \), then set \(v := X(i) \), and \(\text{count} := 1 \)
 - Else If \(X(i) = v \), \(\text{count} := \text{count} + 1 \)
 - Else \(\text{count} = \text{count} - 1 \)
 - If \(\text{count} = 0 \), \(v = \text{NULL} \)

 - Return \(v \)

2. Note: This algorithm does not guarantee correctness if the most frequent value does not appear strictly more than half of the stream.

3. Analysis: [Wikipedia Ref]

 Claim: If there is a strict majority element, this algorithm correctly finds it.

 Proof: If there is a majority element, the algorithm will always find it. Supposing that the majority element is \(m \), let \(c \) be a number defined at any step of the algorithm to be either the counter, if the stored element is \(m \), or the negation of the counter otherwise. Then at each step in which the algorithm encounters \(m \), the value of \(c \) will increase by one, and at each step at which it encounters a different value, the value of \(c \) may either increase or decrease by one. If \(m \) truly is the majority, there will be more increases than decreases, and \(c \) will be positive
at the end of the algorithm. But this can be true only when the final stored element is m, the majority element.

4. Generalization to T elements with frequency at least $\frac{1}{T+1}$
 - For $i = 1$ to n do
 - If $X(i) \in K$, count[$X(i)$] += 1
 - Else add $X(i)$ to K, count[$X(i)$] = 1
 - If $|K| > T$, subtract 1 from all counters, throw out zero elements.

5. Analysis: A proof can be found in handouts link.

1.4 Estimating #of distinct elements in a stream
Flajolet-Martin (1984)
For this algorithm, we need a hash function $h(x)$ which hash x into a k bit binary number, where 2^k is at least larger than n.
 - $r = \max_{j,i}(\#\text{zero's at the right end of } h_j(x_i))$,
 - Ans: 2^r.

1.5 Analysis
Suppose m is the number of distinct elements. Then
 - Chance that none reaches special node: $(1 - 2^{-r})^m = (1 - \frac{1}{2^r})^{m-2^r} \simeq e^{-\frac{m}{2^r}}$
 - If $m > 2^r$, say $m = 2^r+1$, then $e^{-\frac{m}{2^r}} = e^{-2}$, which is a low chance.
 - If $m \ll 2^r$, say $m = 2^r-2$, then $e^{-\frac{2^r-2}{2^r}} = e^{-\frac{1}{4}}$, which is close to 1.