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Abstract 

We present new algorithms for computing approximate 
quantiles of large datasets in a single pass. The approxima- 
tion guarantees are explicit, and apply for arbitrary value 
distributions and arrival distributions of the dataset. The 
main memory requirements are smaller than those reported 
earlier by an order of magnitude. 

We also discuss methods that couple the approximation 
algorithms with random sampling to further reduce mem- 
ory requirements. With sampling, the approximation guar- 
antees are explicit but probabilistic, i.e. they apply with 
respect to a (user controlled) confidence parameter. 

We present the algorithms, their theoretical analysis and 
simulation results on different datasets. 

1 Introduction 

This article studies the problem of computing order statis- 
tics of large sequences of online or disk-resident data using 
as little main memory as possible. We focus on comput- 
ing quantiles, which are elements at specific positions in the 
sorted order of the input. The &quantile, for 4 E [O,l], 
is defined to be the element in position [4Nl in the sorted 
sequence of the input. Here, and in the rest of this paper N 
denotes the number of elements in the input. For 4 = 0.5, 
the quantile is called the median. An element is said to be an 
e-approximate +quantile if its rank is between [(4 - e)N] 
and r(+ + a)N] Clearly, there could be several elements in 
the dataset that qualify. 

1.1 Database Applications 

Quantiles are of interest to both database implementers 
and database users. They characterize distributions of real 
world data sets and are less sensitive to outliers than the 
moments (mean and variance). They can be used by busi- 
ness intelligence applications to distill summary information 
from huge data sets. 

Obtaining an accurate estimate of predicate selectivity is 
valuable for query optimization [l]. To better estimate the 
cardinality of query result sets, quantiles can be, and are, 
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used to characterize the distribution of stored data [2]. Equi- 
depth histograms [3], for instance, are simply i-quantiles for 
z E { 1,2, p- l}, computed over column values of database 
tables for a suitable p. 

Parallel database systems [4, 51 employ value range data 
partitioning that requires generation of splitters to divide the 
data into approximately equal parts. Distributed parallel 
sorting can also use splitter values to assign data elements 
to the nodes where they will be sorted [6]. 

Approximate quantiles can be substituted for exact quan- 
tiles in all the three applications, namely statistical data 
analysis, database query optimization and value range data 
partitioning. However, without any guarantee on the error 
i.e. number of elements between the true quantile and the 
approximate quantile, practitioners should be, and are, re- 
luctant to use the algorithms that produce them. However, 
if an algorithm provides explicit and a priori guarantees on 
the accuracy of its output, quantiles can be understood and 
trusted for use. 

1.2 Challenges to Meet 

The efficiency and correctness of the algorithm should 
be data independent. Datasets originate from two sources, 
namely stored tables and intermediate query results. The 
sequence of values coming from a stored table is influenced 
by the insert order and data value clustering. The sequence 
of values coming from an intermediate result depends on the 
query plan: for example, a merge join will produce a table 
ordered on the join column. Even if the stored or inter- 
mediate table is clustered (sorted) on a column(s) different 
from the ones used for quantile computation, correlations 
between these columns are not unlikely. Thus, arrival or- 
ders and value distributions are hard to characterize. It is 
important that algorithms not depend on assumptions about 
either for efficiency or correctness. 

We note that different applications demand different lev- 
els of accuracy. Indeed, the amount of error in the quantiles 
produced affects the performance of the application that 
uses them. This cost can sometimes be quantified. For 
example, equi-depth histogram errors lead to cardinality es- 
timation errors in query optimization. The cost of-par& 
tion imbalance for distributed sorting is proportional to the 
difference between completion times for the smallest and 
largest partitions. The quantile finding algorithm should be 
tunable to the level of accuracy required for the application, 
and its performance should degrade gracefully when the ac- 
curacy requirements on it are increased. 
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We require that only a single pass should be made over 
the data. Multiple passes over large data sets are unattrac- 
tive for performance reasons and are incompatible with most 
DBMS GROUP BY implementations. 

Finally, we must address the problem of main memory 
usage. Clearly, the entire input stream cannot be buffered 
in memory. For a given degree of accuracy, the algorithm 
should use as little main memory as possible. This is es- 
pecially important for query optimization as it is desirable 
to compute histograms for multiple columns of a table in a 
single pass over a table. GROUP BY algorithms also compute 
multiple aggregation results concurrently. 

We propose the following desiderata: An algorithm must 
1) not require prior knowledge of the arrival or value distri- 
bution of its inputs, 2) provide explicit and tunable approx- 
imation guarantees, 3) compute results in a single pass, 4) 
be parallelizable and scale welI on SMP and MPP configu- 
rations, 5) produce multiple quantiles at no extra cost, 6) 
use as little memory as possible, and 7) be simple to code 
and understand. As we shall see, the algorithms we present 
clearly meet the first five requirements. While they improve 
upon previously described algorithms in memory usage, they 
still impose non-trivial memory costs. The reader will judge 
the simplicity and understandability of our algorithms. 

2 Antecedents 

2.1 The Theory Literature 

The theory literature has primarily focused on counting 
the number of comparisons needed to find the exact median 
(quantile). The celebrated paper of Blum, Floyd, Pratt, 
Rivest and Tarjan[7], shows that selection of the kth largest 
element out of N can be’done using at most 5.43N com- 
parisons. This paper also shows that at least 1.5N com- 
parisons are required in the computation of the exact me- 
dian. For an account of progress since then, see the survey 
by Mike Paterson [8]. The current best bounds are much 
tighter and are the product of sophisticated and deep anal- 
ysis (see [8, 9, 10, 11, 121). The upper bound is 2.9423N 
comparisons, and the lower bound (2 + o)N, where a is 
of the order of 2-40, an extremely small number by most 
standards. 

Frances Yao [13] showed that computing an approximate 
median requires n(N) comparisons for any deterministic al- 
gorithm. Curiously, this lower bound is easily beaten by 
resorting to randomization. The naive randomized algo- 
rithm, which outputs the median of a random sample of 
size 0( f log 6-l ), uses a number of comparisons indepen- 
dent of N. For a comprehensive survey of this aspect of the 
literature, see the survey by Paterson [8]. 

Ira Pohl[14] established that any deterministic algorithm 
that computes the exact median in one pass needs to store at 
least N/2 data elements. Munro and Paterson [15] general- 

ized this and showed that memory to store O(N$) elements 
is necessary and sufficient for finding the exact median in 
p passes. The same bound holds for any &quantile for a 
constant 4. This result motivates a search for algorithms 
that produce approzimate quantiles in a single pass with 
less memory. 

2.2 The Database Literature 

Jain and Chlamtac [16] proposed a simple algorithm for 
computing quantiles in a single pass using only a constant 

amount of memory. However, there are no a-priori guaran- 
tees on the error. Agrawal and Swami [17] proposed another 
one pass algorithm. The idea here is to adjust equi-depth 
histogram boundaries on the fly when they do not appear 
to be in balance. Again, there are no strong and a-priori 
guarantees on error. 

Alsabti, Ranka and Singh [18] propose a data indepen- 
dent single pass algorithm with guaranteed error bounds. 
We describe this algorithm in more detail in Section 4.4. 

Random sampling can be a very useful tool in this con- 
text. It has been used by Dewitt et al [S] for distributed 
sorting. We discuss this idea and various applications in 
detail in Section 5. 

2.3 Bridging the gap 

The ideas in the paper by Munro and Paterson can be 
applied to develop a one-pass algorithm for approximate 
quantiles. Indeed, though (or perhaps because) the original 
paper appeared as early as 1980, this fact appears to have 
been missed by the database community. In this paper, we 
will describe a general and uniform setting which includes 
the Mum-o and Paterson algorithm as a special case. In do- 
ing so, we will improve upon the Munro-Paterson algorithm 
in terms of space required. We show how these algorithms 
can be coupled with sampling to obtain further reduction in 
space. 

Here is a statement of the problem we tackle in the 
next two sections: Given N, 4 and E, design a single pass 
algorithm that computes an e-approximate &quantile of a 
dataset of site N using as little main memory as possible. 

3 A Uniform Framework 

Any algorithm in our framework is parameterized by two 
integers b and k. The algorithm will use b buffers each of 
which can store k elements. Thus, (but for a small amount 
of memory required for book-keeping purposes), the memory 
footprint will be bk elements. We also associate with each 
buffer X, a positive integer w(X), which denotes its weight. 
Intuitively, the weight of a buffer is the number of input 
elements represented by each element in the buffer. Buffers 
are always labeled empty or full. Initially, all b buffers are 
labeled empty. 

The values of b and k will be fixed to (1) enforce the 
approximation guarantee and (2) optimize bk under the first 
constraint. 

Various algorithms can be composed from an interleaved 
sequence of three operations, namely NEW, COLLAPSE and 
OUTPUT, which we now describe. 

3.1 NEW Operation 

NEW takes as input an empty buffer. It is invoked only 
if there is an empty buffer and at least one outstanding ele- 
ment in the input sequence. The operation simply populates 
the input buffer with the next k elements from the input se- 
quence, labels the buffer as fuh, and assigns it a weight of 1. 
If the buffer cannot be filled completely because there are 
less than k remaining elements in the input sequence, an 
equal number of -oo and $00 elements are added to make 
up for the deficit. 

Let the size of augmented dataset, consisting of the -oo 
and $00 elements added to the last buffer, be PN for some 
p 2 1. Let I$’ = v. It is clear that the &quantile of 
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OUTPUT: 
23 52 83 114 143 weight 9. 

Sorted Sequence: (c&et = 5) 

12 12 23 23 rzl 33 33 33 44 
44 44 44 52 pJ 64 64 64 64 
72 72 83 83 1831 94 94 94 94 
102 102 114 114 11141 114 124 124 124 
124 132 132 143 11431 143 153 153 153 

[NPUT: 
weight 2, 
weight 3, 
weight 4. 

Figure 1: COLLAPSE illustrated. 

the original detaset of size IV corresponds to the d’-quartile 
of the augmented dataset of size PN. 

3.2 COLLAPSE Operation 

COLLAPSE takes c > 2 full input buffers, X1, X2,. . . ,X,, 
8nd outputs a buffer, Y, 8ll of size k. In the end, 8ll but one 
input buffer is marked empty. The output Y is stored in the 
buffer that is marked full. Thus, Y is logically different from 
x1,x2,.,. , X, but physically occupies space corresponding 
to one of them. 

The weight of the output buffer w(Y) is the sum of 
weights of input buffers, C:=, w(X,). We now describe the 
elements stored in Y. Figure 1 illustrates the COLLAPSE 
operation. 

Consider making w(X,) copies of each element in Xi 8nd 
sorting 8ll the input buffers together, taking into account 
the multiple copies. The elements in Y are simply k equally 
spaced elements in this (sorted) sequence. If w(Y) is odd, 
these k elements are in positions jw(Y) + q, for j = 

0, 1, . . , k - 1. We c8ll the quantity q, the oflset for 
this COLLAPSE. If w(Y) is even, we have two choices: We 
could either choose elements in positions jw(Y) + F or 
those in positions jw(Y) + v, for j = 0, 1, . . . , k - 
1. The COLLAPSE operator alternates between these two 
choices on successive invocations with even w(Y). In short, 
if we denote the offset for an output buffer Y by &et(Y), 
the contents of Y can be described as consisting of elements 
in positions j.w(Y) + offset(Y), for j = 0, 1, . . . , k - 1. 

It is easy to see that multiple copies of elements need not 
actually be meteri8lized. The outputs to be stored in Y can 
be identified 8s follows: First sort the input buffers individ- 
u8lly and then start merging them. While merging, if the 
element just selected originates from buffer X,, a counter 
(initialized to zero) gets incremented w(X,) times. If the 
counter hits 8 value that corresponds to 8 position for which 
Y should be populated, the selected element is marked; oth- 
erwise it is left unmarked. In the end, all marked elements 
are collected together into one of the input buffers, which is 
labeled full; the remaining input buffers are labeled empty. 

Let C denote the totd number of COLLAPSE operations 
carried out during the course of the algorithm. Let W denote 

the sum of weights of the output buffers produced in all such 
operations. 

Lemma 1 The sum of ofisets of al! the COLLAPSE opera- 
tions is at least v. 

Proof: Let C = C&d + C,,.,, where Codd and C.,,, are 
the number of COLLAPSE operations where the weight w(Y) 
of the output buffer Y is odd 8nd even respectively. 

Further, let C,,,, = Ci,., + C&.,, where C.&., is the 
number of COLLAPSE oDerations where the offset for out- 
put buffer Y is q and C,“,,., is the number of COLLAPSE 

operations where the offset of output buffer Y is T. 

Clearly, the sum of 8ll offsets is W+C.ldd+2u~“YC2L . Since 
COLLAPSE alternates between the two choic& of offsets for 
even weights of the output buffer, C2 > ‘**;“-l. There- even _ 
fore, the sum of 8ll offsets is at least w. 0 

3.3 OUTPUT Operation 

OUTPUT is performed exactly once, just before termina- 
tion. It takes c > 2 full input buffers, X1,X2,. . . ,X,, of 
size k. It outputs a single element, corresponding to the 
approximate 4’-quartile of the augmented dataset. Recall 
that the d-quartile of the original dataset corresponds to 
the 4’ quartile of the augmented datrrset, consisting of the 
-oo and +oo elements added to the last buffer. 

Similar to COLLAPSE, this operator makes Y(X;) copies 
of each element in Xi and sorts 8ll the input buffers to- 
gether, tcrking the multiple copies of each element into ac- 
count. The output is the element in position [&kW] , where 
w = w(X1) + w(X2) + . . . + w(Xc). 

An algorithm for computing approximate quartiles con- 
sists of a series of invocations of NEW and COLLAPSE, ter- 
minating with OUTPUT. NEW populates empty buffers with 
input and COLLAPSE reclaims some of them by collapsing 
a chosen subset of full buffers. OUTPUT is invoked on the 
final set of full buffers. Different buffer collapsing policies 
correspond to different dgorithms. We now describe three 
interesting policies. 

3.4 COLLAPSE Policies 

Munro and Paterson [15] 

If there is 8n empty buffer, invoke NEW; otherwise, in- 
voke COLLAPSE on two buffers having the same weight. 

Alsabti, Ranka and Singh [18] 

Fill b/2 empty buffers by invoking NEW and then in- 
voke COLLAPSE on them. Repeat this b/2 times and 
invoke OUTPUT on the resulting buffers. 

New Algorithm 

Associate with esch buffer X an integer C(X) that de- 
notes its level. Let .! be the smallest among the levels 
of currently full buffers. If there is exactly one empty 
buffer, invoke NEW and assign it level L. If there are at 
least two empty buffers, invoke NEW on each and as- 
sign level 0 to each one. If there 8x-e no empty buffers, 
invoke COLLAPSE on the set of buffers with level L. 
Assign the output buffer, level e + 1. 
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4 Analysis 

In this section, we will first see how the sequence of op- 
erations carried out by the algorithm can be looked upon 
as a tree of buffers. Next, we analyze the tree and show 
error bounds on the quality of the output. Finally, we show 
how we compute values of b and k to minimize memory for 
different collapsing policies. 

4.1 A Tree Representation 

The sequence of operations carried out by the algorithm 
can be represented by a tree. The vertex set of the tree 
(except the root) is the set of all the (logical) buffers (ini- 
tial, intermediate or final) produced during the computa- 
tion. Clearly, there are many more of these than b, the num- 
ber of physical buffers used by the algorithm. The leaves of 
the tree correspond to initial buffers that get populated from 
the incoming datastream. An edge is drawn from each input 
buffer to the output buffer of a COLLAPSE operation. The 
root corresponds the fmal OUTPUT operation. The children 
of the root are the flnal buffers produced. We draw broken 
edges from the children to the root. 

See Figures 2, 3 and 4 for the trees resulting from the 
Munro-Paterson algorithm, Alsabti-Ranka-Singh algorithm 
and the new collapsing policy proposed in this paper. The 
labels of nodes correspond to their weights. 

32-V.. __.’ __,. . .._ .._. 

Figure 2: The tree for Munro-Paterson algorithm for 
b = 6 buffers. Each node is labeled with its weight. 

,’ 
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Figure 3: The tree for Alsabti-Ranka-Singh algorithm 
for b = 10 buffers. Each node is labeled with its 
weight. 

It is possible to have collapsing policies that are not rep- 
resentable as trees. Also, it is possible to vary the buffer 
sizes. Such schemes are not in the scope of this paper. 

11111111111111 111111111 11111 11 

Figure 4: The tree for the new collapsing scheme, 
with b = 5 buffers. Each node is labeled with its 
weight. 

4.2 Approximation Guarantees 

Let L denote the number of leaves in the tree. Let C 
denote the number of COLLAPSE operations i.e. the number 
of non-leaf non-root nodes. Let W denote the sum of weights 
of all COLLAPSE operations. Let wmas denote the weight of 
the heaviest child of the root. See Figure 5 for a quick 
reference to the list of symbols used in the analysis. 

In this section, we will prove the following: The difference 
in rank between the true d-puantile of the original dataset 
and that of the output produced by the algorithm is at most 
v + wmaz. 

We require a few simple results to ratify this claim, which 
we re-state as Lemma 5. The reader who wishes to skip the 
proof can jump to Section 4.3 without loss in continuity, 
noting that the claim holds for any tree whose leaves have 
weight 1 and whose non-leaves have at least two children. 
The leaves need not be at the same level. 

Lemma 2 The sum of weights of the top buglers i.e. the 
children of the root, is L, the number of leaves. 0 

Let Q be the output of the algorithm. We say that an 
element in the input sequence is definitely-small if we can 
assert that it is smaller than Q. Similarly, we say that an 
element is definitely-largeif there is evidence that it is larger 
than Q. 

Our analysis proceeds in two phases: First, we describe 
a procedure to identify the definitely-small and deflnitely- 
large elements and mark them. Next, we describe a counting 
technique to establish that there are a fairly large number 
of such elements. 

The identification procedure starts with the top buffers 
i.e. the children of the root. We mark elements in these 
buffers as definitely-small or definitely-large depending upon 
whether they are smaller or larger than Q. The element Q 
itself belongs to neither of the two categories. Some of the 
children of the root are leaves; we ignore them. Other chil- 
dren have at least two children and are the outputs of COL- 
LAPSE operations. Consider one such output buffer and its 
children. All elements among the children that are smaller 
than a definitely-small element in the output can be marked 
definitely-small. Similarly, all elements among the children 
that are larger than a definitely-large element in the output 
can be marked definitely-large. See Figure 6 for an exam- 
ple. We continue in this fashion until all the leaves have 
been processed. 

Consider the sets of definitely-small and definitely-large 
elements among the children of the root. From Lemma 2, we 
infer that OUTPUT selects the element at position r&U] in 
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User Specified: 
N Size of dataset 
4 Quantile to be computed 
E Approximation guarantee 

Others: 
b Number of buffers 
k Size of each buffer 
4’ Quantile in the augmented dataset 

consisting of -co and +cn elements 

c Number of COLLAPSBS 

W Sum of weights of all COLLAPSBS 

wma, Weight of heaviest COLLAPSB 

L Number of leaves in the tree 
h Height of tree 

Figure 5: List of important symbols used in the anal- 
ysis. 

the sorted sequence of copies of elements. Though we cannot 
place an interesting bound on the number of definitely-small 
elements among these buffers, we can certainly place one on 
their weighted sum, where the weight of an element is the 
weight of the buffer it originates from. The same holds for 
definitely-large elements. 

Let DSt,, denote the weighted sum of definitely-small 
elements among the top buffers i.e. children of the root. Let 
DLtOp denote the weighted sum of defh-ritely-large elements 
among these buffers. 

Lemma 3 

r&L1 - wmas I: D&o, 5 f’#kL] - 1 

kL - [4’kL] - wmaz + 1 5 DLt, 5 kL - [+‘kLl 

Consider a node Y in the tree corresponding to a COL- 
LAPSE operation. Let Y have s 2 0 definitely-small ele- 
ments. Then the weighted sum of these elements is SW(Y). 
Consider the largest element in this set of definitely-small 
elements. This element is in position (s-l)w(Y)+oflset( Y) 
in the sorted sequence of elements of its children with each 
element having been duplicated as many times as the weight 
of the child it originates from. Therefore, the weighted 
sum of definitely-small elements among the children of Y 
(smaller than the largest deiinitely-small element in Y) is 
(s-l)w(Y)+o#set(Y) which canalso be writtenas SW(Y)+ 
(w(Y) - o&et(Y)). See Figures 1 and 6 for an illustration 
of this argument. We can similarly argue that if there are &! 
definitely-large elements in Y, for a weighted sum of ew( Y), 
then the weighted sum of definitely-large elements among 
its children is at least ew(q - (w(Y) - o&et(Y)). 

We have shown that the weighted sum of both dejinitely- 
small and definitely-large elements among the children of 
each node Y is smaller by at most w(Y) - o#set(Y) than 
the weighted sum of definitely-small and definitely-large el- 
ements in Y itself. This suggests a counting technique in 
which we maintain a set of buffers and the weighted sums of 
definitely-small and definitely-large elements in those buffers. 
The initial set is the set of top buffers, with the weighted 
sums being DSt, and DLt,r respectively. We repeatedly 
replace a non-leaf in the set by its children and update 

OUTPUT: 
23 52 114 1431 weight 9 

(dsfinitaly-.mdl) (dofiniboly-large) 

sorted Sequence: (oflset = 5) 

12 12 23 23 33 33 33 44 
44 44 44 52 64 64 64 64 
72 72 83 83 94 94 94 94 
102 102 114 114 114 124 124 124 
124 132 132 143 143 163 163 153 

NPUT: 

(definitely-small) 

Figure 6: Identification of definitely-small and 
definitely-large elements illustrated for an interme- 
diate node in the tree, corresponding to the same 
input/output buffers as in Figure 1. 

the weighted sum of definitely-small and definitely-large el- 
ements. This process stops when we have traveled down 
towards all the leaves and no non-leaf remains in the set. 

Let OS,,,,, and DLlcoues denote the weighted sum of 
definitely-small and definitely-small elements in the set of 
leaf buffers. Since the weight of each leaf is one, DSle~,,, 
and DLL,,,,, is, in fact, the number of definitely-small and 
definitely-large elements in the augmented dataset, exactly 
the values of interest. 

Lemma 4 

D&awes 2 DSt, - 
w-c+1 

2 

DL leaver 2 DLt, - 
w-c+1 

2 

Proof Starting at the top buffers, i.e. children of the root, 
the initial weighted sums of defmitely-small and defhritely- 
large elements are DSt, and DLt, respectively. We know 
that each COLLAPSE operation, corresponding to a node Y, 
diminishes the weighted sum of definitely-small and definitely- 
large elements by at most w(Y) - o@et(Y). Thus, as we 
travel down towards the leaves and hit a node Y, both DSt, 
and DLt,r get dimished by w(Y) - oflset(Y). The total 
amount they are both dimished by, is the sum of weights of 
all COLLAPSE operations minus the sum of offsets of all COL- 
LAPSE operations. The first quantity is exactly W. From 
Lemma 1, the second quantity is at least B. This 
gives us the desired bounds on DSleoves an d Dikw.. 0 

Lemma 5 The difference in rank between the true &quantile 
of the original dataset and that of the output produced by the 
algorithm is at most w + wmor. 

Proof Since there are L leaves and each leaf buffer is worth 
k elements, there are a total of kL elements in the augmented 

430 



Munro-Paterson Algorithm 

-iF 
E 
280 
198 
88 - 
62 - 
26 

-v 
= 

5 __ 
6 - 
7 
3 
3 - 

Number of buffers 
16” 
Z=Z==Z 

6 
11 
52 

105 
592 

lsabti-Ranka-Singh 
Size of buffer k 

1 lo6 1 lo7 j lo8 

Algorithm 

NE 
Num.hPr of huffera b II Size 0, OUm?f tG 

Table 1: Number of buffers b, size of buffer k and total memory bk. 

detaset. The true #-quantile of the augmented dataset lies 
at position [#kL]. However, the output could be the ele- 
ment at a position as small as DSteavcs + 1 or as large as 
kL - DLleaves. Thus the difference between the true 4’- 
quantile and that of the output of the algorithm could be as 
large as [4’kLl - DSlcaves - 1 or kL - DLleaves - [d’kL]. 
From Lemma 4, we deduce that 

[$‘kLj - DSceoves - 11 [c#ikLl - DSt, + 
W-C+lwl 

2 

Substituting r 
obtain 

r&L 1 
Exactly tl le 

d’kL] - DSt, 2 wrnal from Lemma 3, we 

- D&a,., - 1 5 
w-c-1 

2 + wmaz 

: same bound can be established for the quan- 
tity kL - DLlcayes - [c$‘kL] using a similar argument. 

Therefore, the difference in ranks of the element output 
at the root and that of the true d’-quantile of the augmented 
dataset is no more than v + wmos. Since the true 4’- 
quantile of the augmented dataset is the same as the true 
d-quantile of the original dataset, we get the desired result. 
0 

4.3 Munro-Paterson Algorithm 

The Munro-Paterson algorithm requires two buffers at 
the leaf level and one buffer at each other level of the tree, 
except the root. Therefore, the height of the tree, including 
the root, can be at most b. The two children of the root are 
the inputs to the f&d OUTPUT operation. The collapsing 
scheme described by Munro and Paterson in the original 
paper stipulates that there be exactly Zb-’ leaves and that 
the final OUTPUT operation be carried out on two buffers 
with weight 2’-‘. We will assume the same restrictions while 
analyzing their algorithm. 

For the Munro-Paterson tree, the height is b. The sum of 
weights of all COLLAPSE operations is W = (b- 2)2’-‘ . The 
total number of COLLAPSE operations is C = 2b-1 - 2. The 
heaviest COLLAPSE operation is w,,,~= = 2b-2. Plugging in 
these values into Lemma 5, we obtain that the difference 
between the rank of the output of the algorithm and that 
of the true d-quantile is at most v + w,,,.=+ = (b - 
2)2b-2 + 3. This number should be less than aN, for the 
output to be an c-approximate quantile. 

What are the optimal values of b and k? Our objective 
is to minimize bk, the amount of memory needed, subject to 
the constraints (b - 2)2’-’ + i 5 aN and k2b-’ 2 N. The 
first constraint ensures that the approximation error is at 
most e. The second constraint ensures that the number of 
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elements in all the leaf buffers combined is at least N (there 
are L = 2b-1 leaves, each worth k elements). 

In practice, the optimal values can be calculated by first 
computing the maximum integral b that satisfies (b-2)2’-’ 5 
aN. Since b must he between 1 and log sN, binary search 
can be used. Then compute the smallest integral k that 
satisfies k2’-’ 2 N. 

The values of b, k and the total memory required are 
listed for practical values of N and e in Table 1. 

4.4 Alrabti-Ranka-Singh Algorithm 

For the Alsabti-Ranka-Singh algorithm, we assume that 
b is even. The weighted sum of all COLLAPSE operations 
is W = $. The total number of COLLAPSE operations is 
C = i. The weight of the heaviest COLLAPSE operation is 

wmos = f The number of leaves is L = T. Plugging in 
values into Lemma 5, we obtain that the difference between 
the ranks of the output of the algorithm and that of the true 
&quantile of the original dataset is at most v + wmcr, 

which simplifies to T + s - i. This number should be less 
than rN. 

The optimal values for b and k can be obtained by min- 
imizing bk, subject to the constraints $ + g - i < eN and 

k$ 2 N. In practice, the optimal value can be obtained 
by computing the largest integral b that satisfies the first 
constraint and then computing the smallest integral k that 
satisfies the second one. The values of b, k and the total 
memory required for practical values of N and e are listed 
in Table 1. 

4.5 The New Algorithm 

For the new collapsing policy, the values of W, C and 
wrnas are functions of the height of the tree, which we denote 
by h. The Munro-Paterson tree has a height of at most b. 
The Alsabti-Ranka-Singh tree has a height of 2. However, 
the height of the new tree is not restricted by b. 

For hei 
B 
ht h > 3, the number of leaves in the tree is 

L = (“‘,k; ). Th enumber of COLLAPSE operations is C = 

(“‘,k,“) - 1. The weighted sum of all COLLAPSE operations 

is W = (h - 2) (“‘,t;“) - (“‘,t,“). The weight of the heaviest 

COLLAPSE~~ w,,,~~ = ("',tJ"). 
Our objective is to minimize bk subject to two constraints. 

The first constraint is w-c-1 T+wmos 5 EN, which is equiva- 
lent to (h-2)(b~~‘2)-(b+h~~S)+(b+h~~s) 5 2eN. The second 
constraint is kL 2 N, which is equivalent to k(bih;2) > N. 
In practice, optimal values for b and k can be computed by 
trying out different values of b in the range 1 and 30. For 
each b, compute the largest integral h that satisfies the fnst 
constraint. Then, compute the smallest integral k that sat- 
isfies the second constraint. Identify that value of b that 
minimizes bk. 

The values of b, k and memory requirements for the new 
algorithm are listed in Table 1 for practical values of N and 
r. 

4.6 Performance Comparison 

From Table 1, it can be deduced that the first algorithm 
is always better. Figure 7 shows how the amount of memory 
varies for increasing N, as e is held constant at 0.01. The 
new algorithm is a clear winner. 

Comparison 01 the three Algorithms lor epsilon - 0.01 
60000 , I I , I’ I t 

i 3oow 
I” 

20000 

0 

Figure 7: Memory requirements for e = 0.01. 

The kinks in the curve for the Munro-Paterson algorithm 
merit an explanation. That algorithm stipulates that there 
be exactly 2’-’ leaves in the tree. Recall from Section 4.3 
that we minimize bk, the total memory requirement, subject 
to two constraints, (b - 2)2b-2 + f 5 sN and k2b-’ 2 N. 
As N grows, the largest b that satisfies the first inequality 
increases. As b increases by 1 for two successive values of N, 
the smallest value of k that satisfies the second constraint 
diminishes by roughly half, resulting in a similar reduction 
in the product bk, the total memory required. 

4.7 Multiple Quantiles 

The analysis culminating in Lemma 6 holds for any num- 
ber of quantiles simultaneosly. Therefore, any algorithm in 
our framework computes multiple quantiles with the same 
approximation guarantees at no extra cost. 

4.8 Space Complexity 

The space complexity for the new algorithm can be de- 
termid by restricting b = h. The first constraint, i.e., 

+ wmal < EN can be weakened to 2b(ai) 5 aN, 
yxg b = C(logeN). Together with the second con- 
straint, we obtain k = 0( 5 log rN), for an overall space 
complexity of O(i log’ BN). Asymptotically, the Munro- 
Paterson algorithm also has the same space complexity. 

Theorem 1 It is possible to compute an e-approximate d- 
quantile of a dataset of size N in a single pass using only 
0( f log’ aN) memory, for any ~5. Cl 

In Figure 7, the curves for the new algorithm and the 
Munro-Paterson algorithm are actually parabolic, though 
they appear to be almost straight lines for a limited range 
of log N. Figure 7 shows that the constant for the new 
algorithm is clearly better. For the Alsabti-Rank&ingh 
algorithm, b = O(m) and k = O(f), for a total memory 

requirement of C( 6). This explains the exponential curve 
for their algorithm in Figure 7. 

4.9 Parallel Version 

The new algorithm is easily parallehzed by partitioning 
the input stream (either statically or dynamically) among 
the processors. The root nodes of each partition are concate- 
nated to form an input stream for the final OUTPUT phase 
that outputs the different quantiles. This approach scales 
linearly with the degree of parallelism except for the final 
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Sampling followed by New Algorithm 

Table 2: Memory required by first sampling and then running the new approximate qua&e finding algorithm for different e 
and 6. 

phase. For moderate degrees of parallelism (Z 24 nodes), 
the fmaI phase is insignificant for large data sets. For higher 
degrees of parallelism (> loo), the outputs of the root gates 
can be partitioned arbitrarily to a smaller number of pro- 
cessors. The new roots can now be combined in a final step 
at a single processor. 

5 A Sampling based Algorithm 

In this section, we show how the deterministic algorithm 
presented in Section 3 can be coupled with sampling to ob- 
tain remarkable reductions in space for large N, the size of 
the dataset. Interestingly, the space required becomes inde- 
pendant of N. 

We tackle the following problem: Given N, 4, E and 6, 
design a single pass algorithm to compute an e-approximate 
&quantkle of a dataset of size N using as little main memory 
as possible such that the output is guaranteed to be correct 
with probability at least 1 - 6. 

We require the following inequality due to Hoeffding [19]: 

Lemma 6 (Hoeffding’s Inequality) 
LetXl,Xz,.. , X,, be independant random variables with 

0 < X, 5 1 for i = 1,2,. . ,n. Let X = C:=, X;. Let 
EX denote the expectation of X. Then, for any X > 0, 
Pr[X - EX 2 X] 5 exp s. 0 

The big picture is the following. Let E = 61 + 62. We 
will later describe how el and e2 are to be fixed. Assume 
that it is possible to choose a sample, say, of size S, from a 
total of N elements, such that it is guaranteed, with prob- 
ability at least 1 - 6, that the set of elements between the 
pair of positions [(# f el)Sj in the sorted sequence of the 
sample are a subset of the set of elements between the pair 
of positions [(+ f e) N] in the sorted sequence of the original 
dataset. Then, we can run the new deterministic algorithm 
in Section 3 on the samples, stipulating an accuracy of 61. 
The algorithm guarantees that it outputs a quantile that 
is at most e1.S elements away from the true quantile of the 
sample. Coupled with the guarantee that such an element 
is no further than another 62 elements away in the original 
dataset, with probability at least 1 - 6, the whole scheme 
works. 

The crucial question is: Given N, el, e2 and 6, how big 
a sample do we require? 

Lemma 7 Let e = 61 + 62. A total of S 2 5 log(2C’) 
samples drawn from a population of N elements%re enough 
to guarantee that the set of elements between the pair of 
positions r(q5 f el)Sj in the sorted sequence of the samples 
is a subset of the set of elements between the pair of positions 
[($I f e)Nl in th e sorted sequence of the N elements. 

Proof: We say that a sample is badif it does not satisfy the 
property mentioned in the lemma. Otherwise it is good. 

Let sets N+--e and N4+< denote the set of elements pre- 
ceding the (4-e)-quantile and succeeding the (d+e)-quantile 
among N elements respectively. 

A sample of size S is bad if and only if more than I(4 - 
el)Sl elements are drawn from N+, or more than S- [(4+ 
el)q elements are drawn from N++,. 

The probability that more than [(d -el)S/ elements are 
drawn from N+-, can be bounded as follows. The process of 
drawing a sample of size S from a population of N elements 
corresponds to S independent Bernoulli trials (coin tosses) 
with probability b, - c. The expected number of successful 
trials is (4 - e)S. If the number of successful trials is more 
than I(4 - e2)S], the sample is bad. The probability that it 

occurs is less than e --2c2SX 1 from Hoeffding’s inequality. 
A symmetric argumeni shows that the probability that 

more than S - [(d, + el)SJ elements are drawn from N++. 
is also less than e 4%; s= . 

Thus the probability 6 that the sample is bad is at most 
2e-2e:S1. Solving for S, we obtain S 2 $log(26-‘). 0 

2 

Interestingly, the number of samples S is independant of 
N. 

How do we fix cl and a~? 

Let 61 = UE, for some a E (0,l). Then, e2 = (1 - cy)c. 
As (Y approaches one, the number of samples increases. As 
a approaches zero, the approximation guarantee required of 
the deterministic algorithm increases. In either case, the 
memory requirements blow up. Clearly, there is an optimal 
value of OL that minimizes memory. 

How do we compute the optimal value of a? For practical 
values of e and 6, one can compute the overall memory rc- 
quirements for different values of Q E [0.2,0.8] in increments 
of 0.001 and figure out where the minimum value lies. See 
Table 2 for memory requirements for different c and 6. 

Theoretically, the complexity can be determined by fix- 
ing a to be a constant, say 0.5. Then, the number of sam- 
ples is O(e-210gS-‘). Fr om Section 4.8, the new deter- 
ministic algorithm requires O(e-’ log’ EN) space for N ele- 
ments, the space requirements for running it on the samples 
is O(e-’ log2[a-’ log a-‘]). 

Theorem 2 It is posskble to compute an e-approximate c$- 
quantile with probability of success at least 6 for an arbi- 
trary sized dataset in a single pass using O(e-’ log2 e-l + 
e-l log2 log 6-l) space. 0 
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5.1 To Sample or Not to Sample 

When is it a good idea to sample and then use the new 
quantile finding algorithm? For a fixed value of E and 6, 
there is a threshold value for N above which we are better 
off sampling. The threshold value can be obtained by first 
computing the minimum memory required for a fixed value 
of e and 6, using the technique outlined earlier in this section, 
and then computing the maximum N whose e-approximate 
quantile can be computed in the same amount of memory. 
See Figure 8 for the threshold values for e between 0.1 and 
0.0001. 

Figure 8: Threshold value for N for confidence 99.99%. 

5.2 Multiple Quantiles 

If we want to compute p different quantiles, each with an 
error bound of e with confidence at least 1 - 6 that all quan- 
tiles are e-approximate, then the following approach works: 
Let e = ~1 + ez. Let 5’ = $eT” log(2p6-1). We choose S 
samples and feed them to the deterministic algorithm, stip- 
ulating an accuracy of ei. We read off p quantiles instead 
of a single quantile in the final COLLAPSE operation. All 
quantiles are guaranteed, with probability at least 1 - 6, 
to be e-approximate. Optimal values for cr and ez can be 
calculated using the same technique outlined earlier in this 
section. 

The proof for the correctness of the approach is simple: 
Let 6’ = 6/p. Using Lemma 7, we can argue that the proba- 
bility that a particular quantile fails to be e-approximate is 
at most 6’. It follows that the probability that any quantile 
fails to be e-approximate is at most ~6’ which is simply 6. 

From Theorem 2, we deduce that the dependence of the 
total amount of memory required on the number of quan- 
tiles p, is 0(log2 logp). Therefore, the cost of computing 
many quantiles at once is not too great. Note that multi- 
ple quantiles do not require any extra memory if we run a 
deterministic algorithm from Section . However, with ran- 
dom sampling, probabilistic guarantees on error bounds on 
multiple quantiles necessitates a slightly larger sized sam- 
ple, which in turn increases memory requirements by a small 
U(log’ logp) factor. 

6 Simulation Results 

Our analysis of the new deterministic algorithm is for 
the worst case scenario. In practice, it is unlikely that any 
approximate quantile output at the root gate really deviates 
from its exact value by as much as e. To ratify our claim, 
we present experimental results on datasets with different 
sequences of ranks of elements. Note that the exact values 

of data elements are of no consequence. It is the permutation 
of their ranks in sorted order that matters. 

We study two kinds of permutations: sorted and random. 
We fix e = lo-’ and compute 15 quantiles at positions & 
for p E {1,2,. . ,15}. The results are tabulated in Table 3. 

Table 3: Final error obtained by running the new 
algorithm on different sized datasets with 6 = 0.001. 

It is clear that the actual error obtained is much better 
than the E we started out with. 

7 Conclusions and Future Work 

We have described algorithms for computing approxi- 
mate quantiles with guaranteed error bounds in a single 
pass over large online or disk-resident datasets. The al- 
gorithms require substantially less memory than previously 
published results. We have shown how further reduction 
in memory can be achieved by coupling sampling with an 
approximate quantile computing algorithm. More interest- 
ingly, above certain dataset sizes, the memory requirement 
becomes independent of the size of the dataset at the cost 
of probabilistic confidence in the approximation guarantee. 
We have derived important parameters of the algorithms 
over varying input sizes, error bounds and quantiles needed. 
The memory requirements, accuracy guarantees and exper- 
imental results for the new algorithms show that it is now 
practical and safe to both deliver order statistics aggrega- 
tion to database users, and also to exploit them for query 
optimization and data partitioning. 

The clearly delineated tradeoff between the accuracy of 
any quantile and the memory requirements poses a challeng- 
ing choice to users of the algorithm. In some cases, further 
analysis may be able to quantify the cost benefit of the ac- 
curacy for particular applications. In other cases, the user’s 
judgment may be required to choose an appropriate error 
bound. 

Practical implementations in “real” Relational Database 
Management Systems will be challenged by the need to sup- 
port additional parameters (4, e and 6) for SQL column 
functions which have only a single parameter up to this 
point. It will also require some ingenuity to handle mul- 
tiple quantiles efficiently on the same column (e.g., SELECT 
QUANTILE (0.35, toll), QUANTILE (0.50, toll), . ..). In ad- 
dition, the non-trivial memory requirements will probably 
require some tricky extensions to the GROUP BY execution 
environment of the system. 
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