
Approximate Medians and other Quantiles in One Pass
and with Limited Memory

Gurmeet Singh Manku Sridhar Rajagopalan Bruce G. Lindsay
IBM Almaden Research Center

mankuOalmaden.ibm.com

IBM Almaden Research Center

sridharOalmaden.ibm.com

IBM Almaden Research Center

bruce&Jmaden.ibm.com

Abstract

We present new algorithms for computing approximate
quantiles of large datasets in a single pass. The approxima-
tion guarantees are explicit, and apply for arbitrary value
distributions and arrival distributions of the dataset. The
main memory requirements are smaller than those reported
earlier by an order of magnitude.

We also discuss methods that couple the approximation
algorithms with random sampling to further reduce mem-
ory requirements. With sampling, the approximation guar-
antees are explicit but probabilistic, i.e. they apply with
respect to a (user controlled) confidence parameter.

We present the algorithms, their theoretical analysis and
simulation results on different datasets.

1 Introduction

This article studies the problem of computing order statis-
tics of large sequences of online or disk-resident data using
as little main memory as possible. We focus on comput-
ing quantiles, which are elements at specific positions in the
sorted order of the input. The &quantile, for 4 E [O,l],
is defined to be the element in position [4Nl in the sorted
sequence of the input. Here, and in the rest of this paper N
denotes the number of elements in the input. For 4 = 0.5,
the quantile is called the median. An element is said to be an
e-approximate +quantile if its rank is between [(4 - e)N]
and r(+ + a)N] Clearly, there could be several elements in
the dataset that qualify.

1.1 Database Applications

Quantiles are of interest to both database implementers
and database users. They characterize distributions of real
world data sets and are less sensitive to outliers than the
moments (mean and variance). They can be used by busi-
ness intelligence applications to distill summary information
from huge data sets.

Obtaining an accurate estimate of predicate selectivity is
valuable for query optimization [l]. To better estimate the
cardinality of query result sets, quantiles can be, and are,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists. requires prior specific permission and/or a fee.
SIGMOD ‘96 Seattle, WA, USA
8 1996 ACM 0-69791.995-5/96/006...$5.00

used to characterize the distribution of stored data [2]. Equi-
depth histograms [3], for instance, are simply i-quantiles for
z E { 1,2, p- l}, computed over column values of database
tables for a suitable p.

Parallel database systems [4, 51 employ value range data
partitioning that requires generation of splitters to divide the
data into approximately equal parts. Distributed parallel
sorting can also use splitter values to assign data elements
to the nodes where they will be sorted [6].

Approximate quantiles can be substituted for exact quan-
tiles in all the three applications, namely statistical data
analysis, database query optimization and value range data
partitioning. However, without any guarantee on the error
i.e. number of elements between the true quantile and the
approximate quantile, practitioners should be, and are, re-
luctant to use the algorithms that produce them. However,
if an algorithm provides explicit and a priori guarantees on
the accuracy of its output, quantiles can be understood and
trusted for use.

1.2 Challenges to Meet

The efficiency and correctness of the algorithm should
be data independent. Datasets originate from two sources,
namely stored tables and intermediate query results. The
sequence of values coming from a stored table is influenced
by the insert order and data value clustering. The sequence
of values coming from an intermediate result depends on the
query plan: for example, a merge join will produce a table
ordered on the join column. Even if the stored or inter-
mediate table is clustered (sorted) on a column(s) different
from the ones used for quantile computation, correlations
between these columns are not unlikely. Thus, arrival or-
ders and value distributions are hard to characterize. It is
important that algorithms not depend on assumptions about
either for efficiency or correctness.

We note that different applications demand different lev-
els of accuracy. Indeed, the amount of error in the quantiles
produced affects the performance of the application that
uses them. This cost can sometimes be quantified. For
example, equi-depth histogram errors lead to cardinality es-
timation errors in query optimization. The cost of-par&
tion imbalance for distributed sorting is proportional to the
difference between completion times for the smallest and
largest partitions. The quantile finding algorithm should be
tunable to the level of accuracy required for the application,
and its performance should degrade gracefully when the ac-
curacy requirements on it are increased.

326

We require that only a single pass should be made over
the data. Multiple passes over large data sets are unattrac-
tive for performance reasons and are incompatible with most
DBMS GROUP BY implementations.

Finally, we must address the problem of main memory
usage. Clearly, the entire input stream cannot be buffered
in memory. For a given degree of accuracy, the algorithm
should use as little main memory as possible. This is es-
pecially important for query optimization as it is desirable
to compute histograms for multiple columns of a table in a
single pass over a table. GROUP BY algorithms also compute
multiple aggregation results concurrently.

We propose the following desiderata: An algorithm must
1) not require prior knowledge of the arrival or value distri-
bution of its inputs, 2) provide explicit and tunable approx-
imation guarantees, 3) compute results in a single pass, 4)
be parallelizable and scale welI on SMP and MPP configu-
rations, 5) produce multiple quantiles at no extra cost, 6)
use as little memory as possible, and 7) be simple to code
and understand. As we shall see, the algorithms we present
clearly meet the first five requirements. While they improve
upon previously described algorithms in memory usage, they
still impose non-trivial memory costs. The reader will judge
the simplicity and understandability of our algorithms.

2 Antecedents

2.1 The Theory Literature

The theory literature has primarily focused on counting
the number of comparisons needed to find the exact median
(quantile). The celebrated paper of Blum, Floyd, Pratt,
Rivest and Tarjan[7], shows that selection of the kth largest
element out of N can be’done using at most 5.43N com-
parisons. This paper also shows that at least 1.5N com-
parisons are required in the computation of the exact me-
dian. For an account of progress since then, see the survey
by Mike Paterson [8]. The current best bounds are much
tighter and are the product of sophisticated and deep anal-
ysis (see [8, 9, 10, 11, 121). The upper bound is 2.9423N
comparisons, and the lower bound (2 + o)N, where a is
of the order of 2-40, an extremely small number by most
standards.

Frances Yao [13] showed that computing an approximate
median requires n(N) comparisons for any deterministic al-
gorithm. Curiously, this lower bound is easily beaten by
resorting to randomization. The naive randomized algo-
rithm, which outputs the median of a random sample of
size 0(f log 6-l), uses a number of comparisons indepen-
dent of N. For a comprehensive survey of this aspect of the
literature, see the survey by Paterson [8].

Ira Pohl[14] established that any deterministic algorithm
that computes the exact median in one pass needs to store at
least N/2 data elements. Munro and Paterson [15] general-

ized this and showed that memory to store O(N$) elements
is necessary and sufficient for finding the exact median in
p passes. The same bound holds for any &quantile for a
constant 4. This result motivates a search for algorithms
that produce approzimate quantiles in a single pass with
less memory.

2.2 The Database Literature

Jain and Chlamtac [16] proposed a simple algorithm for
computing quantiles in a single pass using only a constant

amount of memory. However, there are no a-priori guaran-
tees on the error. Agrawal and Swami [17] proposed another
one pass algorithm. The idea here is to adjust equi-depth
histogram boundaries on the fly when they do not appear
to be in balance. Again, there are no strong and a-priori
guarantees on error.

Alsabti, Ranka and Singh [18] propose a data indepen-
dent single pass algorithm with guaranteed error bounds.
We describe this algorithm in more detail in Section 4.4.

Random sampling can be a very useful tool in this con-
text. It has been used by Dewitt et al [S] for distributed
sorting. We discuss this idea and various applications in
detail in Section 5.

2.3 Bridging the gap

The ideas in the paper by Munro and Paterson can be
applied to develop a one-pass algorithm for approximate
quantiles. Indeed, though (or perhaps because) the original
paper appeared as early as 1980, this fact appears to have
been missed by the database community. In this paper, we
will describe a general and uniform setting which includes
the Mum-o and Paterson algorithm as a special case. In do-
ing so, we will improve upon the Munro-Paterson algorithm
in terms of space required. We show how these algorithms
can be coupled with sampling to obtain further reduction in
space.

Here is a statement of the problem we tackle in the
next two sections: Given N, 4 and E, design a single pass
algorithm that computes an e-approximate &quantile of a
dataset of site N using as little main memory as possible.

3 A Uniform Framework

Any algorithm in our framework is parameterized by two
integers b and k. The algorithm will use b buffers each of
which can store k elements. Thus, (but for a small amount
of memory required for book-keeping purposes), the memory
footprint will be bk elements. We also associate with each
buffer X, a positive integer w(X), which denotes its weight.
Intuitively, the weight of a buffer is the number of input
elements represented by each element in the buffer. Buffers
are always labeled empty or full. Initially, all b buffers are
labeled empty.

The values of b and k will be fixed to (1) enforce the
approximation guarantee and (2) optimize bk under the first
constraint.

Various algorithms can be composed from an interleaved
sequence of three operations, namely NEW, COLLAPSE and
OUTPUT, which we now describe.

3.1 NEW Operation

NEW takes as input an empty buffer. It is invoked only
if there is an empty buffer and at least one outstanding ele-
ment in the input sequence. The operation simply populates
the input buffer with the next k elements from the input se-
quence, labels the buffer as fuh, and assigns it a weight of 1.
If the buffer cannot be filled completely because there are
less than k remaining elements in the input sequence, an
equal number of -oo and $00 elements are added to make
up for the deficit.

Let the size of augmented dataset, consisting of the -oo
and $00 elements added to the last buffer, be PN for some
p 2 1. Let I$’ = v. It is clear that the &quantile of

427

OUTPUT:
23 52 83 114 143 weight 9.

Sorted Sequence: (c&et = 5)

12 12 23 23 rzl 33 33 33 44
44 44 44 52 pJ 64 64 64 64
72 72 83 83 1831 94 94 94 94
102 102 114 114 11141 114 124 124 124
124 132 132 143 11431 143 153 153 153

[NPUT:
weight 2,
weight 3,
weight 4.

Figure 1: COLLAPSE illustrated.

the original detaset of size IV corresponds to the d’-quartile
of the augmented dataset of size PN.

3.2 COLLAPSE Operation

COLLAPSE takes c > 2 full input buffers, X1, X2,. . . ,X,,
8nd outputs a buffer, Y, 8ll of size k. In the end, 8ll but one
input buffer is marked empty. The output Y is stored in the
buffer that is marked full. Thus, Y is logically different from
x1,x2,.,. , X, but physically occupies space corresponding
to one of them.

The weight of the output buffer w(Y) is the sum of
weights of input buffers, C:=, w(X,). We now describe the
elements stored in Y. Figure 1 illustrates the COLLAPSE
operation.

Consider making w(X,) copies of each element in Xi 8nd
sorting 8ll the input buffers together, taking into account
the multiple copies. The elements in Y are simply k equally
spaced elements in this (sorted) sequence. If w(Y) is odd,
these k elements are in positions jw(Y) + q, for j =

0, 1, . . , k - 1. We c8ll the quantity q, the oflset for
this COLLAPSE. If w(Y) is even, we have two choices: We
could either choose elements in positions jw(Y) + F or
those in positions jw(Y) + v, for j = 0, 1, . . . , k -
1. The COLLAPSE operator alternates between these two
choices on successive invocations with even w(Y). In short,
if we denote the offset for an output buffer Y by &et(Y),
the contents of Y can be described as consisting of elements
in positions j.w(Y) + offset(Y), for j = 0, 1, . . . , k - 1.

It is easy to see that multiple copies of elements need not
actually be meteri8lized. The outputs to be stored in Y can
be identified 8s follows: First sort the input buffers individ-
u8lly and then start merging them. While merging, if the
element just selected originates from buffer X,, a counter
(initialized to zero) gets incremented w(X,) times. If the
counter hits 8 value that corresponds to 8 position for which
Y should be populated, the selected element is marked; oth-
erwise it is left unmarked. In the end, all marked elements
are collected together into one of the input buffers, which is
labeled full; the remaining input buffers are labeled empty.

Let C denote the totd number of COLLAPSE operations
carried out during the course of the algorithm. Let W denote

the sum of weights of the output buffers produced in all such
operations.

Lemma 1 The sum of ofisets of al! the COLLAPSE opera-
tions is at least v.

Proof: Let C = C&d + C,,.,, where Codd and C.,,, are
the number of COLLAPSE operations where the weight w(Y)
of the output buffer Y is odd 8nd even respectively.

Further, let C,,,, = Ci,., + C&.,, where C.&., is the
number of COLLAPSE oDerations where the offset for out-
put buffer Y is q and C,“,,., is the number of COLLAPSE

operations where the offset of output buffer Y is T.

Clearly, the sum of 8ll offsets is W+C.ldd+2u~“YC2L . Since
COLLAPSE alternates between the two choic& of offsets for
even weights of the output buffer, C2 > ‘**;“-l. There- even _
fore, the sum of 8ll offsets is at least w. 0

3.3 OUTPUT Operation

OUTPUT is performed exactly once, just before termina-
tion. It takes c > 2 full input buffers, X1,X2,. . . ,X,, of
size k. It outputs a single element, corresponding to the
approximate 4’-quartile of the augmented dataset. Recall
that the d-quartile of the original dataset corresponds to
the 4’ quartile of the augmented datrrset, consisting of the
-oo and +oo elements added to the last buffer.

Similar to COLLAPSE, this operator makes Y(X;) copies
of each element in Xi and sorts 8ll the input buffers to-
gether, tcrking the multiple copies of each element into ac-
count. The output is the element in position [&kW] , where
w = w(X1) + w(X2) + . . . + w(Xc).

An algorithm for computing approximate quartiles con-
sists of a series of invocations of NEW and COLLAPSE, ter-
minating with OUTPUT. NEW populates empty buffers with
input and COLLAPSE reclaims some of them by collapsing
a chosen subset of full buffers. OUTPUT is invoked on the
final set of full buffers. Different buffer collapsing policies
correspond to different dgorithms. We now describe three
interesting policies.

3.4 COLLAPSE Policies

Munro and Paterson [15]

If there is 8n empty buffer, invoke NEW; otherwise, in-
voke COLLAPSE on two buffers having the same weight.

Alsabti, Ranka and Singh [18]

Fill b/2 empty buffers by invoking NEW and then in-
voke COLLAPSE on them. Repeat this b/2 times and
invoke OUTPUT on the resulting buffers.

New Algorithm

Associate with esch buffer X an integer C(X) that de-
notes its level. Let .! be the smallest among the levels
of currently full buffers. If there is exactly one empty
buffer, invoke NEW and assign it level L. If there are at
least two empty buffers, invoke NEW on each and as-
sign level 0 to each one. If there 8x-e no empty buffers,
invoke COLLAPSE on the set of buffers with level L.
Assign the output buffer, level e + 1.

428

4 Analysis

In this section, we will first see how the sequence of op-
erations carried out by the algorithm can be looked upon
as a tree of buffers. Next, we analyze the tree and show
error bounds on the quality of the output. Finally, we show
how we compute values of b and k to minimize memory for
different collapsing policies.

4.1 A Tree Representation

The sequence of operations carried out by the algorithm
can be represented by a tree. The vertex set of the tree
(except the root) is the set of all the (logical) buffers (ini-
tial, intermediate or final) produced during the computa-
tion. Clearly, there are many more of these than b, the num-
ber of physical buffers used by the algorithm. The leaves of
the tree correspond to initial buffers that get populated from
the incoming datastream. An edge is drawn from each input
buffer to the output buffer of a COLLAPSE operation. The
root corresponds the fmal OUTPUT operation. The children
of the root are the flnal buffers produced. We draw broken
edges from the children to the root.

See Figures 2, 3 and 4 for the trees resulting from the
Munro-Paterson algorithm, Alsabti-Ranka-Singh algorithm
and the new collapsing policy proposed in this paper. The
labels of nodes correspond to their weights.

32-V.. __.’ __,. . .._ .._.

Figure 2: The tree for Munro-Paterson algorithm for
b = 6 buffers. Each node is labeled with its weight.

,’

,,-,:%:..

,I ,’ ~~ -..

,,’
,’ : ‘I~ --.__

x~ . . I\ -...
~,~~~.~

1111111111111111111111111

Figure 3: The tree for Alsabti-Ranka-Singh algorithm
for b = 10 buffers. Each node is labeled with its
weight.

It is possible to have collapsing policies that are not rep-
resentable as trees. Also, it is possible to vary the buffer
sizes. Such schemes are not in the scope of this paper.

11111111111111 111111111 11111 11

Figure 4: The tree for the new collapsing scheme,
with b = 5 buffers. Each node is labeled with its
weight.

4.2 Approximation Guarantees

Let L denote the number of leaves in the tree. Let C
denote the number of COLLAPSE operations i.e. the number
of non-leaf non-root nodes. Let W denote the sum of weights
of all COLLAPSE operations. Let wmas denote the weight of
the heaviest child of the root. See Figure 5 for a quick
reference to the list of symbols used in the analysis.

In this section, we will prove the following: The difference
in rank between the true d-puantile of the original dataset
and that of the output produced by the algorithm is at most
v + wmaz.

We require a few simple results to ratify this claim, which
we re-state as Lemma 5. The reader who wishes to skip the
proof can jump to Section 4.3 without loss in continuity,
noting that the claim holds for any tree whose leaves have
weight 1 and whose non-leaves have at least two children.
The leaves need not be at the same level.

Lemma 2 The sum of weights of the top buglers i.e. the
children of the root, is L, the number of leaves. 0

Let Q be the output of the algorithm. We say that an
element in the input sequence is definitely-small if we can
assert that it is smaller than Q. Similarly, we say that an
element is definitely-largeif there is evidence that it is larger
than Q.

Our analysis proceeds in two phases: First, we describe
a procedure to identify the definitely-small and deflnitely-
large elements and mark them. Next, we describe a counting
technique to establish that there are a fairly large number
of such elements.

The identification procedure starts with the top buffers
i.e. the children of the root. We mark elements in these
buffers as definitely-small or definitely-large depending upon
whether they are smaller or larger than Q. The element Q
itself belongs to neither of the two categories. Some of the
children of the root are leaves; we ignore them. Other chil-
dren have at least two children and are the outputs of COL-
LAPSE operations. Consider one such output buffer and its
children. All elements among the children that are smaller
than a definitely-small element in the output can be marked
definitely-small. Similarly, all elements among the children
that are larger than a definitely-large element in the output
can be marked definitely-large. See Figure 6 for an exam-
ple. We continue in this fashion until all the leaves have
been processed.

Consider the sets of definitely-small and definitely-large
elements among the children of the root. From Lemma 2, we
infer that OUTPUT selects the element at position r&U] in

429

User Specified:
N Size of dataset
4 Quantile to be computed
E Approximation guarantee

Others:
b Number of buffers
k Size of each buffer
4’ Quantile in the augmented dataset

consisting of -co and +cn elements

c Number of COLLAPSBS

W Sum of weights of all COLLAPSBS

wma, Weight of heaviest COLLAPSB

L Number of leaves in the tree
h Height of tree

Figure 5: List of important symbols used in the anal-
ysis.

the sorted sequence of copies of elements. Though we cannot
place an interesting bound on the number of definitely-small
elements among these buffers, we can certainly place one on
their weighted sum, where the weight of an element is the
weight of the buffer it originates from. The same holds for
definitely-large elements.

Let DSt,, denote the weighted sum of definitely-small
elements among the top buffers i.e. children of the root. Let
DLtOp denote the weighted sum of defh-ritely-large elements
among these buffers.

Lemma 3

r&L1 - wmas I: D&o, 5 f’#kL] - 1

kL - [4’kL] - wmaz + 1 5 DLt, 5 kL - [+‘kLl

Consider a node Y in the tree corresponding to a COL-
LAPSE operation. Let Y have s 2 0 definitely-small ele-
ments. Then the weighted sum of these elements is SW(Y).
Consider the largest element in this set of definitely-small
elements. This element is in position (s-l)w(Y)+oflset(Y)
in the sorted sequence of elements of its children with each
element having been duplicated as many times as the weight
of the child it originates from. Therefore, the weighted
sum of definitely-small elements among the children of Y
(smaller than the largest deiinitely-small element in Y) is
(s-l)w(Y)+o#set(Y) which canalso be writtenas SW(Y)+
(w(Y) - o&et(Y)). See Figures 1 and 6 for an illustration
of this argument. We can similarly argue that if there are &!
definitely-large elements in Y, for a weighted sum of ew(Y),
then the weighted sum of definitely-large elements among
its children is at least ew(q - (w(Y) - o&et(Y)).

We have shown that the weighted sum of both dejinitely-
small and definitely-large elements among the children of
each node Y is smaller by at most w(Y) - o#set(Y) than
the weighted sum of definitely-small and definitely-large el-
ements in Y itself. This suggests a counting technique in
which we maintain a set of buffers and the weighted sums of
definitely-small and definitely-large elements in those buffers.
The initial set is the set of top buffers, with the weighted
sums being DSt, and DLt,r respectively. We repeatedly
replace a non-leaf in the set by its children and update

OUTPUT:
23 52 114 1431 weight 9

(dsfinitaly-.mdl) (dofiniboly-large)

sorted Sequence: (oflset = 5)

12 12 23 23 33 33 33 44
44 44 44 52 64 64 64 64
72 72 83 83 94 94 94 94
102 102 114 114 114 124 124 124
124 132 132 143 143 163 163 153

NPUT:

(definitely-small)

Figure 6: Identification of definitely-small and
definitely-large elements illustrated for an interme-
diate node in the tree, corresponding to the same
input/output buffers as in Figure 1.

the weighted sum of definitely-small and definitely-large el-
ements. This process stops when we have traveled down
towards all the leaves and no non-leaf remains in the set.

Let OS,,,,, and DLlcoues denote the weighted sum of
definitely-small and definitely-small elements in the set of
leaf buffers. Since the weight of each leaf is one, DSle~,,,
and DLL,,,,, is, in fact, the number of definitely-small and
definitely-large elements in the augmented dataset, exactly
the values of interest.

Lemma 4

D&awes 2 DSt, -
w-c+1

2

DL leaver 2 DLt, -
w-c+1

2

Proof Starting at the top buffers, i.e. children of the root,
the initial weighted sums of defmitely-small and defhritely-
large elements are DSt, and DLt, respectively. We know
that each COLLAPSE operation, corresponding to a node Y,
diminishes the weighted sum of definitely-small and definitely-
large elements by at most w(Y) - o@et(Y). Thus, as we
travel down towards the leaves and hit a node Y, both DSt,
and DLt,r get dimished by w(Y) - oflset(Y). The total
amount they are both dimished by, is the sum of weights of
all COLLAPSE operations minus the sum of offsets of all COL-
LAPSE operations. The first quantity is exactly W. From
Lemma 1, the second quantity is at least B. This
gives us the desired bounds on DSleoves an d Dikw.. 0

Lemma 5 The difference in rank between the true &quantile
of the original dataset and that of the output produced by the
algorithm is at most w + wmor.

Proof Since there are L leaves and each leaf buffer is worth
k elements, there are a total of kL elements in the augmented

430

Munro-Paterson Algorithm

-iF
E
280
198
88 -
62 -
26

-v
=

5 __
6 -
7
3
3 -

Number of buffers
16”
Z=Z==Z

6
11
52

105
592

lsabti-Ranka-Singh
Size of buffer k

1 lo6 1 lo7 j lo8

Algorithm

NE
Num.hPr of huffera b II Size 0, OUm?f tG

Table 1: Number of buffers b, size of buffer k and total memory bk.

detaset. The true #-quantile of the augmented dataset lies
at position [#kL]. However, the output could be the ele-
ment at a position as small as DSteavcs + 1 or as large as
kL - DLleaves. Thus the difference between the true 4’-
quantile and that of the output of the algorithm could be as
large as [4’kLl - DSlcaves - 1 or kL - DLleaves - [d’kL].
From Lemma 4, we deduce that

[$‘kLj - DSceoves - 11 [c#ikLl - DSt, +
W-C+lwl

2

Substituting r
obtain

r&L 1
Exactly tl le

d’kL] - DSt, 2 wrnal from Lemma 3, we

- D&a,., - 1 5
w-c-1

2 + wmaz

: same bound can be established for the quan-
tity kL - DLlcayes - [c$‘kL] using a similar argument.

Therefore, the difference in ranks of the element output
at the root and that of the true d’-quantile of the augmented
dataset is no more than v + wmos. Since the true 4’-
quantile of the augmented dataset is the same as the true
d-quantile of the original dataset, we get the desired result.
0

4.3 Munro-Paterson Algorithm

The Munro-Paterson algorithm requires two buffers at
the leaf level and one buffer at each other level of the tree,
except the root. Therefore, the height of the tree, including
the root, can be at most b. The two children of the root are
the inputs to the f&d OUTPUT operation. The collapsing
scheme described by Munro and Paterson in the original
paper stipulates that there be exactly Zb-’ leaves and that
the final OUTPUT operation be carried out on two buffers
with weight 2’-‘. We will assume the same restrictions while
analyzing their algorithm.

For the Munro-Paterson tree, the height is b. The sum of
weights of all COLLAPSE operations is W = (b- 2)2’-‘ . The
total number of COLLAPSE operations is C = 2b-1 - 2. The
heaviest COLLAPSE operation is w,,,~= = 2b-2. Plugging in
these values into Lemma 5, we obtain that the difference
between the rank of the output of the algorithm and that
of the true d-quantile is at most v + w,,,.=+ = (b -
2)2b-2 + 3. This number should be less than aN, for the
output to be an c-approximate quantile.

What are the optimal values of b and k? Our objective
is to minimize bk, the amount of memory needed, subject to
the constraints (b - 2)2’-’ + i 5 aN and k2b-’ 2 N. The
first constraint ensures that the approximation error is at
most e. The second constraint ensures that the number of

431

elements in all the leaf buffers combined is at least N (there
are L = 2b-1 leaves, each worth k elements).

In practice, the optimal values can be calculated by first
computing the maximum integral b that satisfies (b-2)2’-’ 5
aN. Since b must he between 1 and log sN, binary search
can be used. Then compute the smallest integral k that
satisfies k2’-’ 2 N.

The values of b, k and the total memory required are
listed for practical values of N and e in Table 1.

4.4 Alrabti-Ranka-Singh Algorithm

For the Alsabti-Ranka-Singh algorithm, we assume that
b is even. The weighted sum of all COLLAPSE operations
is W = $. The total number of COLLAPSE operations is
C = i. The weight of the heaviest COLLAPSE operation is

wmos = f The number of leaves is L = T. Plugging in
values into Lemma 5, we obtain that the difference between
the ranks of the output of the algorithm and that of the true
&quantile of the original dataset is at most v + wmcr,

which simplifies to T + s - i. This number should be less
than rN.

The optimal values for b and k can be obtained by min-
imizing bk, subject to the constraints $ + g - i < eN and

k$ 2 N. In practice, the optimal value can be obtained
by computing the largest integral b that satisfies the first
constraint and then computing the smallest integral k that
satisfies the second one. The values of b, k and the total
memory required for practical values of N and e are listed
in Table 1.

4.5 The New Algorithm

For the new collapsing policy, the values of W, C and
wrnas are functions of the height of the tree, which we denote
by h. The Munro-Paterson tree has a height of at most b.
The Alsabti-Ranka-Singh tree has a height of 2. However,
the height of the new tree is not restricted by b.

For hei
B
ht h > 3, the number of leaves in the tree is

L = (“‘,k;). Th enumber of COLLAPSE operations is C =

(“‘,k,“) - 1. The weighted sum of all COLLAPSE operations

is W = (h - 2) (“‘,t;“) - (“‘,t,“). The weight of the heaviest

COLLAPSE~~ w,,,~~ = ("',tJ").
Our objective is to minimize bk subject to two constraints.

The first constraint is w-c-1 T+wmos 5 EN, which is equiva-
lent to (h-2)(b~~‘2)-(b+h~~S)+(b+h~~s) 5 2eN. The second
constraint is kL 2 N, which is equivalent to k(bih;2) > N.
In practice, optimal values for b and k can be computed by
trying out different values of b in the range 1 and 30. For
each b, compute the largest integral h that satisfies the fnst
constraint. Then, compute the smallest integral k that sat-
isfies the second constraint. Identify that value of b that
minimizes bk.

The values of b, k and memory requirements for the new
algorithm are listed in Table 1 for practical values of N and
r.

4.6 Performance Comparison

From Table 1, it can be deduced that the first algorithm
is always better. Figure 7 shows how the amount of memory
varies for increasing N, as e is held constant at 0.01. The
new algorithm is a clear winner.

Comparison 01 the three Algorithms lor epsilon - 0.01
60000 , I I , I’ I t

i 3oow
I”

20000

0

Figure 7: Memory requirements for e = 0.01.

The kinks in the curve for the Munro-Paterson algorithm
merit an explanation. That algorithm stipulates that there
be exactly 2’-’ leaves in the tree. Recall from Section 4.3
that we minimize bk, the total memory requirement, subject
to two constraints, (b - 2)2b-2 + f 5 sN and k2b-’ 2 N.
As N grows, the largest b that satisfies the first inequality
increases. As b increases by 1 for two successive values of N,
the smallest value of k that satisfies the second constraint
diminishes by roughly half, resulting in a similar reduction
in the product bk, the total memory required.

4.7 Multiple Quantiles

The analysis culminating in Lemma 6 holds for any num-
ber of quantiles simultaneosly. Therefore, any algorithm in
our framework computes multiple quantiles with the same
approximation guarantees at no extra cost.

4.8 Space Complexity

The space complexity for the new algorithm can be de-
termid by restricting b = h. The first constraint, i.e.,

+ wmal < EN can be weakened to 2b(ai) 5 aN,
yxg b = C(logeN). Together with the second con-
straint, we obtain k = 0(5 log rN), for an overall space
complexity of O(i log’ BN). Asymptotically, the Munro-
Paterson algorithm also has the same space complexity.

Theorem 1 It is possible to compute an e-approximate d-
quantile of a dataset of size N in a single pass using only
0(f log’ aN) memory, for any ~5. Cl

In Figure 7, the curves for the new algorithm and the
Munro-Paterson algorithm are actually parabolic, though
they appear to be almost straight lines for a limited range
of log N. Figure 7 shows that the constant for the new
algorithm is clearly better. For the Alsabti-Rank&ingh
algorithm, b = O(m) and k = O(f), for a total memory

requirement of C(6). This explains the exponential curve
for their algorithm in Figure 7.

4.9 Parallel Version

The new algorithm is easily parallehzed by partitioning
the input stream (either statically or dynamically) among
the processors. The root nodes of each partition are concate-
nated to form an input stream for the final OUTPUT phase
that outputs the different quantiles. This approach scales
linearly with the degree of parallelism except for the final

432

Sampling followed by New Algorithm

Table 2: Memory required by first sampling and then running the new approximate qua&e finding algorithm for different e
and 6.

phase. For moderate degrees of parallelism (Z 24 nodes),
the fmaI phase is insignificant for large data sets. For higher
degrees of parallelism (> loo), the outputs of the root gates
can be partitioned arbitrarily to a smaller number of pro-
cessors. The new roots can now be combined in a final step
at a single processor.

5 A Sampling based Algorithm

In this section, we show how the deterministic algorithm
presented in Section 3 can be coupled with sampling to ob-
tain remarkable reductions in space for large N, the size of
the dataset. Interestingly, the space required becomes inde-
pendant of N.

We tackle the following problem: Given N, 4, E and 6,
design a single pass algorithm to compute an e-approximate
&quantkle of a dataset of size N using as little main memory
as possible such that the output is guaranteed to be correct
with probability at least 1 - 6.

We require the following inequality due to Hoeffding [19]:

Lemma 6 (Hoeffding’s Inequality)
LetXl,Xz,.. , X,, be independant random variables with

0 < X, 5 1 for i = 1,2,. . ,n. Let X = C:=, X;. Let
EX denote the expectation of X. Then, for any X > 0,
Pr[X - EX 2 X] 5 exp s. 0

The big picture is the following. Let E = 61 + 62. We
will later describe how el and e2 are to be fixed. Assume
that it is possible to choose a sample, say, of size S, from a
total of N elements, such that it is guaranteed, with prob-
ability at least 1 - 6, that the set of elements between the
pair of positions [(# f el)Sj in the sorted sequence of the
sample are a subset of the set of elements between the pair
of positions [(+ f e) N] in the sorted sequence of the original
dataset. Then, we can run the new deterministic algorithm
in Section 3 on the samples, stipulating an accuracy of 61.
The algorithm guarantees that it outputs a quantile that
is at most e1.S elements away from the true quantile of the
sample. Coupled with the guarantee that such an element
is no further than another 62 elements away in the original
dataset, with probability at least 1 - 6, the whole scheme
works.

The crucial question is: Given N, el, e2 and 6, how big
a sample do we require?

Lemma 7 Let e = 61 + 62. A total of S 2 5 log(2C’)
samples drawn from a population of N elements%re enough
to guarantee that the set of elements between the pair of
positions r(q5 f el)Sj in the sorted sequence of the samples
is a subset of the set of elements between the pair of positions
[($I f e)Nl in th e sorted sequence of the N elements.

Proof: We say that a sample is badif it does not satisfy the
property mentioned in the lemma. Otherwise it is good.

Let sets N+--e and N4+< denote the set of elements pre-
ceding the (4-e)-quantile and succeeding the (d+e)-quantile
among N elements respectively.

A sample of size S is bad if and only if more than I(4 -
el)Sl elements are drawn from N+, or more than S- [(4+
el)q elements are drawn from N++,.

The probability that more than [(d -el)S/ elements are
drawn from N+-, can be bounded as follows. The process of
drawing a sample of size S from a population of N elements
corresponds to S independent Bernoulli trials (coin tosses)
with probability b, - c. The expected number of successful
trials is (4 - e)S. If the number of successful trials is more
than I(4 - e2)S], the sample is bad. The probability that it

occurs is less than e --2c2SX 1 from Hoeffding’s inequality.
A symmetric argumeni shows that the probability that

more than S - [(d, + el)SJ elements are drawn from N++.
is also less than e 4%; s= .

Thus the probability 6 that the sample is bad is at most
2e-2e:S1. Solving for S, we obtain S 2 $log(26-‘). 0

2

Interestingly, the number of samples S is independant of
N.

How do we fix cl and a~?

Let 61 = UE, for some a E (0,l). Then, e2 = (1 - cy)c.
As (Y approaches one, the number of samples increases. As
a approaches zero, the approximation guarantee required of
the deterministic algorithm increases. In either case, the
memory requirements blow up. Clearly, there is an optimal
value of OL that minimizes memory.

How do we compute the optimal value of a? For practical
values of e and 6, one can compute the overall memory rc-
quirements for different values of Q E [0.2,0.8] in increments
of 0.001 and figure out where the minimum value lies. See
Table 2 for memory requirements for different c and 6.

Theoretically, the complexity can be determined by fix-
ing a to be a constant, say 0.5. Then, the number of sam-
ples is O(e-210gS-‘). Fr om Section 4.8, the new deter-
ministic algorithm requires O(e-’ log’ EN) space for N ele-
ments, the space requirements for running it on the samples
is O(e-’ log2[a-’ log a-‘]).

Theorem 2 It is posskble to compute an e-approximate c$-
quantile with probability of success at least 6 for an arbi-
trary sized dataset in a single pass using O(e-’ log2 e-l +
e-l log2 log 6-l) space. 0

433

5.1 To Sample or Not to Sample

When is it a good idea to sample and then use the new
quantile finding algorithm? For a fixed value of E and 6,
there is a threshold value for N above which we are better
off sampling. The threshold value can be obtained by first
computing the minimum memory required for a fixed value
of e and 6, using the technique outlined earlier in this section,
and then computing the maximum N whose e-approximate
quantile can be computed in the same amount of memory.
See Figure 8 for the threshold values for e between 0.1 and
0.0001.

Figure 8: Threshold value for N for confidence 99.99%.

5.2 Multiple Quantiles

If we want to compute p different quantiles, each with an
error bound of e with confidence at least 1 - 6 that all quan-
tiles are e-approximate, then the following approach works:
Let e = ~1 + ez. Let 5’ = $eT” log(2p6-1). We choose S
samples and feed them to the deterministic algorithm, stip-
ulating an accuracy of ei. We read off p quantiles instead
of a single quantile in the final COLLAPSE operation. All
quantiles are guaranteed, with probability at least 1 - 6,
to be e-approximate. Optimal values for cr and ez can be
calculated using the same technique outlined earlier in this
section.

The proof for the correctness of the approach is simple:
Let 6’ = 6/p. Using Lemma 7, we can argue that the proba-
bility that a particular quantile fails to be e-approximate is
at most 6’. It follows that the probability that any quantile
fails to be e-approximate is at most ~6’ which is simply 6.

From Theorem 2, we deduce that the dependence of the
total amount of memory required on the number of quan-
tiles p, is 0(log2 logp). Therefore, the cost of computing
many quantiles at once is not too great. Note that multi-
ple quantiles do not require any extra memory if we run a
deterministic algorithm from Section . However, with ran-
dom sampling, probabilistic guarantees on error bounds on
multiple quantiles necessitates a slightly larger sized sam-
ple, which in turn increases memory requirements by a small
U(log’ logp) factor.

6 Simulation Results

Our analysis of the new deterministic algorithm is for
the worst case scenario. In practice, it is unlikely that any
approximate quantile output at the root gate really deviates
from its exact value by as much as e. To ratify our claim,
we present experimental results on datasets with different
sequences of ranks of elements. Note that the exact values

of data elements are of no consequence. It is the permutation
of their ranks in sorted order that matters.

We study two kinds of permutations: sorted and random.
We fix e = lo-’ and compute 15 quantiles at positions &
for p E {1,2,. . ,15}. The results are tabulated in Table 3.

Table 3: Final error obtained by running the new
algorithm on different sized datasets with 6 = 0.001.

It is clear that the actual error obtained is much better
than the E we started out with.

7 Conclusions and Future Work

We have described algorithms for computing approxi-
mate quantiles with guaranteed error bounds in a single
pass over large online or disk-resident datasets. The al-
gorithms require substantially less memory than previously
published results. We have shown how further reduction
in memory can be achieved by coupling sampling with an
approximate quantile computing algorithm. More interest-
ingly, above certain dataset sizes, the memory requirement
becomes independent of the size of the dataset at the cost
of probabilistic confidence in the approximation guarantee.
We have derived important parameters of the algorithms
over varying input sizes, error bounds and quantiles needed.
The memory requirements, accuracy guarantees and exper-
imental results for the new algorithms show that it is now
practical and safe to both deliver order statistics aggrega-
tion to database users, and also to exploit them for query
optimization and data partitioning.

The clearly delineated tradeoff between the accuracy of
any quantile and the memory requirements poses a challeng-
ing choice to users of the algorithm. In some cases, further
analysis may be able to quantify the cost benefit of the ac-
curacy for particular applications. In other cases, the user’s
judgment may be required to choose an appropriate error
bound.

Practical implementations in “real” Relational Database
Management Systems will be challenged by the need to sup-
port additional parameters (4, e and 6) for SQL column
functions which have only a single parameter up to this
point. It will also require some ingenuity to handle mul-
tiple quantiles efficiently on the same column (e.g., SELECT
QUANTILE (0.35, toll), QUANTILE (0.50, toll), . ..). In ad-
dition, the non-trivial memory requirements will probably
require some tricky extensions to the GROUP BY execution
environment of the system.

434

References

[l] P. G. Selinger, M. M. Astrahan, R. A. Lories, and T. G.
Price, “Access Path Selection in a Relational Database
Management System”, in ACM SIGMOD 79, June
1979.

[2] G. Piatetsky-Shapiro, “Accurate Estimation of the
Number of Tuples Satisfying a Condition”, in ACM
SIGMOD 84, Boston, June 1984.

[18] K. Alsabti, S. Ranka, and V. Singh, “A One-Pass Al-
gorithm for Accurately Estimating Quantiles for Disk-
Resident Data”, in Proc. 2&d VLDB Conference,
Athens, Greece, 1997.

[19] W. Hoeffding, “Probability Inequalities for Sums of
Bounded Random Variables”, American Statistical As-
sociation Jornal, pp. 13-30, Mar. 1963.

[3] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J.
Shekita, “Improved Histograms for Selectivity Estima-
tion of Range Predicates”, in ACM SIGMOD 96, pp.
294-305, Montreal, June 1996.

[4] “DB2 MVS:“, To be completed.

[5] “Informix”, To be completed.

[6] D. Dewitt, J. Naughton, and D. Schneider, “Parallel
Sorting on a Shared-Nothing Architecture using Prob-
abilistic Splitting”, in Proc. Intl. Conf. on Parallel and
Distributed Inf. Sys., pp. 280-291, Miami Beach, 1991.

[7] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and
R. E. Tarjan, “Time Bounds for Selection”, in J. Com-
put. Syst. Sci., vol. 7, pp. 448-461, 1973.

[8] M. R. Paterson, “Progress in Selection”, Deptt. of
Computer Science, University of Warwick, Coventry,
UK, 1997.

[9] D. Dor, Selection Algorithms, PhD thesis, Tel-Aviv
University, 1995.

[lo] D. Dor and U. Zwick, “Selecting the Median”, in Proc.
6th Annual ACM-SIAM Symp. on Discrete Algorithms,
pp. 28-37, 1995.

[ll] D. Dor and U. Zwick, “Finding the onth Largest Ele-
ment”, Combinatorics, vol. 16, pp. 41-58, 1996.

[12] D. Dor and U. Zwick, “Median Selection Requires
(2 + 6)n Comparisons”, Technical Report 312/96, De-
partment of Computer Science, Tel-Aviv University,
Apr. 1996.

[13] F. F. Yao, “On Lower Bounds for Selection Problems”,
Technical Report MAC TR-121, Massachusetts Insti-
tute of Technology, 1974.

[14] II’o$~$~Minimum~ Storage Algorithm for Computing
“, Technical Report IBM Research Report

RC 2701 (# 12713), IBM T J Watson Center, Nov.
1969.

[15] J. I. Munro and M. S. Paterson, “Selection and Sorting
with Limited Storage”, Theoretical Computer Science,
vol. 12, pp. 315-323, 1980.

[16] R. Jain and I. Chlamtac, “The P2 Algorithm for Dy-
namic Calculation for Quantiles and Histograms with-
out Storing Observations”, CACM, vol. 28, pp. 1076-
1085, 1985.

[17] R. Agrawal and A. Swami, “A One-Pass Space-Efficient
Algorithm for Finding Quantiles”, in Proc. 7th Intl.
Conj. klanagement of Data (COMAD-95), Pune, India,
1995.

435

