
Pervasive and Mobile Computing () –

Contents lists available at SciVerse ScienceDirect

Pervasive and Mobile Computing

journal homepage: www.elsevier.com/locate/pmc

Middleware for pervasive computing: A survey
Vaskar Raychoudhury a,∗, Jiannong Cao b, Mohan Kumar c, Daqiang Zhang d

a Department of Electronics and Computer Engineering, Indian Institute of Technology Roorkee, India
b Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
c Department of Computer Science and Engineering, The University of Texas at Arlington, TX, USA
d School of Computer Science and Engineering, Nanjing Normal University, Nanjing, China

a r t i c l e i n f o

Article history:
Received 7 December 2011
Received in revised form 10 June 2012
Accepted 23 August 2012
Available online xxxx

Keywords:
Pervasive computing
Middleware
Context management
Service management
Fault tolerance

a b s t r a c t

The rapidly emerging area of pervasive computing faces many challenging research issues
critical to application developers. Wide heterogeneity of hardware, software, and network
resources pose veritable coordination problems and demand thorough knowledge of
individual elements and technologies. In order to ease this problem and to aid application
developers, different middleware platforms have been proposed by researchers. Though
the existing middleware solutions are useful, they themselves have varied features
and contribute partially, for context, data, or service management related application
developments. There is no single middleware solution that can address a majority of
pervasive computing application development issues, due to the diverse underlying
challenges. In this survey paper, we identify different design dimensions of pervasive
computing middleware and investigate their use in providing various system services.
In-depth analysis of the system services have been carried out and middleware systems
have been carefully studied. With a view to aid future middleware developers, we also
identify some challenging open research issues that have received little or no attention in
existing middleware solutions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Pervasive computing (PvC) aims to create a smart environment with embedded and networked computing devices,
providing human users with seamless service access. As the primary focus of PvC is human-centricity, autonomous
detection of application requirements and automatic service provisioning are the two keys to PvC middleware. Application
requirements depend on user context and needs, whereas available resources drive service provisioning capabilities.
The goal of PvC middleware is to match application-needs to available resources, while ensuring quality and efficiency.
Applications of PvC are wide-spread e.g., smart-spaces [1–6], health-care [7–9], assisted-living [10], social networking,
entertainment [11], logistics and intelligent transportation systems. Altogether, PvC concepts are enabling existing
computing infrastructure to enhance human quality of life in a truly ubiquitous manner.

The enabling technologies of PvC [12] consist of smart device technologies, wireless communications (Wi-Fi, Bluetooth,
Zigbee, LTE, NFC, etc.), software, and enhanced human–computer interaction (HCI) techniques. Developments in smart
device technologies include sensors (e.g., UC Berkeley Motes Sensor Network Platform), Radio Frequency ID (RFID)
tags, intelligent appliances, embedded processors, wearable computers, handheld computers, smart phones, and many

∗ Corresponding author.
E-mail addresses: vaskar@ieee.org (V. Raychoudhury), csjcao@comp.polyu.edu.hk (J. Cao), mkumar@uta.edu (M. Kumar), dqzhang@njnu.edu.cn

(D. Zhang).

1574-1192/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.pmcj.2012.08.006

http://dx.doi.org/10.1016/j.pmcj.2012.08.006
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
mailto:vaskar@ieee.org
mailto:csjcao@comp.polyu.edu.hk
mailto:mkumar@uta.edu
mailto:dqzhang@njnu.edu.cn
http://dx.doi.org/10.1016/j.pmcj.2012.08.006

2 V. Raychoudhury et al. / Pervasive and Mobile Computing () –

others. Tiny intelligent sensors have made it possible to deploy ubiquitous services, and thus create various smart
environments. RFID tags allow subtle integration of physical objects (e.g., commodities in a superstore, or books in a
library) into the computing environment. So, in summary, the boundaries of PvC have been broadened by the development
of new technologies, as well as the extensive use of existing technologies, such as, the Internet, mobile and wireless
communications, sensor networks, and RFID technology.

Consider the followingmotivating scenario to appreciate the benefits of an effective middleware for PvC.Mr. Smith is 84-
year-old and lives alone in a remotely located house. He has common old-age ailments along with chronic heart-related disorders.
He often forgets to take his routine medications, and twice he fell down in the shower and remained unconscious for a while.
Recently, a smart elderly-care system was installed in Mr. Smith’s house. The system monitors the physical conditions of Mr.
Smith, and his daily activities through different embedded (pressure, weight, and location sensor), and wearable (blood pressure,
heart, and pulse rate monitor) sensor nodes and other smart devices, such as mobile phone, laptop, PDA, etc. The care system also
employs awearable fall-detection system to detect a victim’s fall in a two-stage process. One afternoon,Mr. Smith became suddenly
ill, fell down from the sofa, and lost consciousness. The following actions would take place if his home is PvC enabled. Initially, an
impact sensor detects a sound whose characteristics are that of a crash or fall. Then, a second sensor captures the orientation and
movement of Mr. Smith. If he is immobile for a time period higher than a threshold value, an alarm is raised by the collaborating
sensors. Then, a number of activities are triggered to check Mr. Smith’s heartbeat, pulse rate, and blood pressure, through different
wearable sensors. This information is forwarded to the patient’s physician, through his smart phone, after verifying the receiver’s
identity. The physician then tries to identify, remotely, the causes of Mr. Smith’s sickness, and the effects. The physician executes
services to logically conclude whether Mr. Smith had his lunch or not, by considering his usual lunch time, condition of his dining
table captured by a camera, and any post-lunch physical effect in his body, captured through wearable sensors. The physician
also needs to know whether Mr. Smith had taken his usual medications, by checking his recorded action of opening medical
cabinet along with any dip in the level/decrease in the number of medicines. In order to judge the seriousness of Mr. Smith’s fall,
the physician may also need to detect chances of bleeding, by analyzing the presence of body fluid around Mr. Smith, and then
checking whether that is blood, or not. Correctly deducing the afore-mentioned decisions is non-trivial, and requires intricate
PvC support.

The above elderly-care system system faces several challenging issues. Firstly, the system employsmultiple wired, as well
as networked embedded sensor nodes. Coordination and management of these large numbers of sensors are non-trivial
tasks. These resource-constrained hardware entities may suffer frequent failures, due to energy depletion, or processing
power and memory size limitation. Secondly, the sensory devices continuously keep collecting huge amounts of raw data
about the actions and physical conditions of the user. Managing huge sets of raw data, storing and processing them, are
also non-trivial. Moreover, this raw data needs to be processed and reasoned with properly in order to capture meaningful
context information about the user. E.g., the sensor nodes embedded in the fall detector can collect raw data and then
can logically conclude about a fall of Mr. Smith. While incorrect context-reasoning may generate false alarms of a fall
(false positive) it may also fail to detect a true fall (false negative). However, for reliable operation of the fall detection
system, fall events should not be missed while false positives should be minimized. Thirdly, the application also needs
to detect services required for the user, subject to certain constraints or conditions. E.g, in the above application, the
system needs to detect whether Mr. Smith had his lunch or not, or whether he had taken his medicines, or even if he is
bleeding due to the impact caused by the fall. However, such a service may be composed of several small or elementary
services and require the support of video footage or sensory gadgets to logically deduce the occurrence of an incident (as
mentioned in the application scenario). Managing all the elementary services and facilitating service composition based
on the user requirements are rather complicated for application developers. Finally, reliability and security are two other
core concerns of PvC applications. Failure of hardware entities (sensors and smart devices) or software functionalities
(context and service management) can equally affect the system, and can thwart proper functioning, which may lead to
serious or fatal consequences for the user. Security concerns are associated with divulging sensitive user information to
unauthorized parties. The above application scenario necessitates verifying the identity of the physician before sharing the
health information of Mr. Smith.

The above challenges clearly manifest the difficulty of PvC application development by programmers, while addressing
all the concerns. Thus, it requires the aid of an efficient middleware platform in order to manage the wide array of
devices, technologies and functionalities. Middleware refers to software and tools that can help hide the complexity and
heterogeneity of the underlying hardware and network platforms, can ease the management of system resources, and can
increase the predictability of application executions. This paper is aimed at conducting a survey of available middleware
platforms for PvC.

Two major research objectives of PvC middleware research are about addressing high-level application requirements
on one hand, and the complexity of the operations in the underlying devices, networks and platforms on the other.
The requirements of pervasive applications are very much application-specific. But usually they include high flexibility,
re-usability, reliability, localised scalability, adaptability and context-awareness. The complexity of operations with PvC
applications are characterized by resource-constraints (in terms of low computation capability and insufficient battery
power) and fault-proneness of devices, dynamicity of network topologies, requirements of interfacing with a myriad of
hardware and network protocols, programming of multiple devices and their interactions, and functionalities for context,
data and service management. PvC middleware provides a potential solution to address the above issues, while easing the
task of PvC application development for the developers.

V. Raychoudhury et al. / Pervasive and Mobile Computing () – 3

Althoughmiddleware is a well-established research area in distributed computing systems, PvC poses new challenges to
middleware research. The traditional middleware design techniques cannot be applied directly to design PvC middleware.
First, PvC environments often showcase far greater heterogeneity, in terms of devices, network protocols, and operating
systems, than traditional distributed and mobile environments. PvC middleware must be able to hide the complexity and
heterogeneity of underlying entities and their interactions, and abstract them into intuitive and accessible programming
constructs. Second, in order to be able to provide situation-aware services to the users, PvC applications often require
features such as context-awareness and service-orientation. Special mechanisms are necessary to support those objectives,
in the form of raw context collection, storage and processing, higher-level context derivation, and context inconsistency
resolution. Service discovery and composition are also equally important to provide users with unconstrained service
support, all the time and everywhere. Third, due to their human-centric nature, PvC applications are often safety-critical, and
need to support users unobtrusively,without requiring any intervention. This requirement posesmany reliability challenges.
Elderly-care or automated traffic management applications can hardly afford system failure or malfunctioning. Finally, PvC
requires the middleware to be lightweight for implementation in sensor nodes or other embedded and portable devices
having limited processing powers and energy backups. PvC also has new requirements on hardware (e.g., various embedded
devices), operating systems, routing protocols, and applications.

In recent years,manyworks have been done on PvCmiddleware, focusing on different aspects, and for different purposes.
Existing PvC middleware systems including, Gaia [13,14], Aura [15–17], PICO/SeSCo [18–20], CORTEX [21], One.World
[22,23], Scenes [24], Activity-oriented computing [25], and UIO [26] are popular and showcase the different design choices
of the PvC middleware paradigm. Although several survey papers can be found in literature, focusing on context modeling
techniques [27–30] and service discovery protocols for PvC environments [31–33], the current paper is a comprehensive
survey, which summarizes the general issues, characteristics and design considerations of available PvC middleware
solutions. This paper presents a systematic study of recent research on PvC middleware to help identify the key services,
challenging issues, and important techniques. The key contributions of the paper are as follows. Firstly, a referencemodel has
been proposed for analyzing the functionalities and key services of PvC-middleware. Secondly, the paper provides a detailed
review of the existing work on the most important aspects in developing PvC middleware, covering the major approaches
to and corresponding techniques of implementing services. Finally, the paper proposes a feature tree-based taxonomy that
organizes PvC-middleware features and their relationships into a framework to help understand and classify the existing
work. The paper also discusses open problems and identifies directions in future research.

The remainder of this paper is organized as follows. In Section 2,wedescribe a referencemodel of generic PvCmiddleware
and describe the design dimensions identified. In Section 3, we discuss in depth the core system services provided by PvC
middleware systems. In Section 4, we discuss the challenges, open problems, and future directions of PvC middleware
research. Finally, we conclude this paper in Section 5.

2. Reference model for PvC middleware

Before setting out to propose a reference model to classify existing PvC middleware systems, we have studied a large
number of research papers on middleware system survey. There are some noteworthy survey papers on middleware
paradigms formobile computing [34], pervasive computing [35], andwireless sensor networks (WSN) [36]which are closely
related to our objective. In their survey on middleware for WSN, Wang et al. [36] have used a reference model based on
programming abstractions, system services, runtime support, and QoS mechanisms, among which the first three have been
used by us in order to classify PvCmiddleware solutions aswell. Schiele et al. [35], in their survey of PvCmiddleware systems,
have introduced three dimensions for classifying the existing PvC middleware systems—the organizational model, the level
of abstractions, and the supported tasks. While the first one is similar to our node and system level abstractions, the second
one is more about the benefits of using abstraction, such as, providing transparency, automation, etc. The last one discusses
themain services, according to the authors,which are provided by PvCmiddleware systems, such as support for spontaneous
interaction, support for context management, and support for application adaptation. So, in general, middleware systems
have traditionally been based on providing some kind of abstractions as well as system services and, keeping that in mind,
below we shall propose our reference model to classify existing PvC middleware systems.

2.1. Model overview

Analyzing the generally adopted techniques of system design, we have identified the following three design dimensions
(Fig. 1) of a PvC middleware system: (1) programming abstractions, (2) system architectures, and (3) system services
and runtime support. Programming abstractions define the interface of the middleware to the application programmer.
System services provide implementations to achieve the abstractions. Runtime support serves as an extension of the
embedded operating system to support the middleware services. The three design dimensions are drawn as mutually
perpendicular axes in order to show their independence or orthogonality. System designers can make any design choice
under a particular design dimension, without affecting design choices under other design dimensions. E.g., for designing a
new PvC middleware, any programming abstraction can be chosen for any system architecture, and any number of system
services can be provided over that new middleware, without mutually affecting the different design choices.

4 V. Raychoudhury et al. / Pervasive and Mobile Computing () –

Fig. 1. Design dimensions of a PvC middleware.

By analysing the characteristics and requirements of the elderly-care PvC applicationmentioned in Section 1, we propose
a reference framework, shown in Fig. 2, which identifies the core system services and runtime supports required to be
provided by a standard PvC middleware. It should be mentioned that it is not necessary for a specific PvC-middleware
to include all the components. Also, functions of several components may be combined together and implemented as
one component. Moreover, the choice of underlying system architectures is important for proper functioning of a PvC
middleware. In the deployment, the functions of PvC-middleware can be distributed to the sensor nodes, other small
computing entities, and high-level application servers. The distributed middleware components, located in different nodes
of the network, communicate with each other to achieve some common goals.

2.2. Programming abstractions

Programming abstractions are the foundations of PvC-middleware. They provide high-level programming interfaces to
the application programmer, with the goal of separating the development of PvC applications from the operations in the
underlying PvC infrastructures. They also provide the basis for developing desirablemiddleware services.We have identified
three aspects that are involved in developing the programming abstractions: abstraction level, programming paradigm, and
interface type.

Abstraction level refers to how the application programmer views the system. We have studied many existing PvC
middleware solutions and have identified two principal types of abstraction levels—node level and system level. Node level
abstraction abstracts the PvC environment as a distributed system consisting of a collection of heterogeneous computing
devices, and provides programming support for individual devices for their actions and cooperation. Node level abstractions
are used by Aura, PICO/SeSCo, CORTEX and Activity-oriented computing (AoC) middleware. Aura uses Task abstraction,
which represents user applications composed of multiple abstract services called Suppliers. Another type of abstraction
called Connectors is abstraction of interconnections between the system components. AoC uses a similar abstraction to
Task used in Aura, called Activity, which is the abstraction of user actions. Activity as an abstraction has been proposed by
the activity-oriented computing paradigm [37] under the purview of PvC. Used in different middleware solutions [38–40],
activities are computational abstractions which can be initiated, suspended, stored, and resumed on any computing device
(hides heterogeneity of the underlying computing platform), at any point in time in a context-aware manner, and can
be handed over to other persons, or shared among several persons. Challenges in activity management include, handling
parallel activities, interruptions, mobility, sharing, collaboration, coordination, etc.

PICO/SeSCo employs two types of abstractions—node-based and event-based. Delegent, is an abstraction of the mobile
software agent, and device is an abstraction of computing devices. Delegents are enabled by events that take place in the
environment. PICO/SeSCo uses event abstraction to spawn services provided by delegents.

CORTEX uses sentient object abstraction which represents smart objects as a single entity. Sometimes, the whole of the
smart environment is called a sentient object, which then stands for a system level abstraction.

System level abstraction depicts the PvC environment as a single virtual system. It allows the programmer to express a
single centralized program (global behavior) into subprograms that can execute on local nodes (nodal behavior), leaving
only a small set of programming primitives for the programmer, while making transparent the low-level concerns, such as
the distributed code generation, remote data access and management, and inter-node program flow coordination. Gaia and
One.World adopt system level abstraction. In Gaia, Active Space is used as an abstraction of the smart physical environment,
whereas, in One.World, environment is an abstraction which incorporates data abstractions, called tuple, and functions as a
container of user applications.

Generally speaking, node level abstraction facilitates the development of applications with more flexibility and energy
saving, and less communication and interpretation overheads. On the other hand, system level abstraction is easier to use,
because nodal behaviors can be generated automatically, so the programmer can concentrate on the network-level actions,
without worrying about how the sensor nodes collaborate with each other to perform the assigned tasks.

The second aspect in developing programming abstractions is programming paradigm, which refers to the model of
programming the applications. It is often dependent on the applications as well as the system architecture. PvC applications

V. Raychoudhury et al. / Pervasive and Mobile Computing () – 5

Fig. 2. Reference model for PvC middleware.

Table 1
Comparison of programming abstractions of PvC middleware systems.

Gaia Aura SeSCo One.World CORTEX AoC

Abstraction level Node level N Y Y N Y Y
System level Y N N Y N N

Programming
model

Component-based Y Y N N N Y
Context-based N N Y Y N N
Decentralized N N Y N Y N

API Active space
programming interface

Aura
task API

Software agent-device
interface

One.World
library

Event comm.
and TCB model

N/A

can adopt any of the following three programming models: context-based, component-based, or decentralized interaction-
based. For the context-based model, event triggering takes place by context change. Context-based models are very much
suitable for the PvC environment, as the system can be adapted to context changes in a dynamicmanner. For the component-
basedmodel, an application is composed of several componentmodules. And for the decentralized interaction-basedmodel,
multiple programmable smart entities interact using some rules.

Gaia, Aura and AoC use a component-based programming model. The Gaia application infrastructure is composed of
distributed components organized similarly to the traditional MVC model. In Aura, each user’s personal aura is composed
of task manager, environment manager, and context observer components. Also, user tasks are represented by a coalition
of abstract services. Similar to Aura, activities in AoC are composed of different service components. PICO/SeSCo uses
both context-based and decentralized programming models. Mission-oriented community formation is triggered by events
generated through context changes. Distributed coordination among the community members is observed similar to
autonomous multi-agent interactions. One.World also uses a context-based model, where event-triggering takes place by
context change, and the context change is made evident to the application. CORTEX uses a decentralized programming
model with autonomous decentralized collaboration among sentient objects (see Table 1).

The third and final aspect in developing programming abstractions is interface type, which refers to the style of the
application programming interface (API). As a matter of fact, programming abstraction is embodied as the programming
interface. PvC applications require different programming interfaces based on the underlying system architecture and
functionalities. Gaia has a standard programming interface of the active space model which enables developers to program
the active space as a single entity. Aura has separate interfaces for suppliers and connectors. PICO/SeSCo provides resource-

6 V. Raychoudhury et al. / Pervasive and Mobile Computing () –

service abstraction through a graph model which helps existing devices to adapt. One.World has a common single API for
service discovery and communication. They also provide One.World library for programmers. CORTEX provides APIs for
event communication as well as API for timely-computing based (TCB) model.

The consideration of adopting a particular abstraction level, and selecting an appropriate programming paradigm and
applicable interface, depends on the specific application requirements and the underlying PvC environment infrastructure.
Different middleware systems providing similar paradigms may share the implementation techniques as well.

2.3. System services and run-time supports

System services embody the functionalities and form the core of PvC-middleware. They are exposed to the application
programmer through the abstraction interface, and provide support for application deployment and execution, as well as
devices and network management. System services are the basic services shared by all PvC applications. They help manage
application information and PvC environment infrastructure. The functionalities provided by the common services include:

• Context management: responsible for contextual data acquisition, processing, and derivation of higher-level contexts,
context dissemination, context inconsistency detection and resolution;

• Service management: responsible for service discovery, service composition, and service handoff in PvC environment;
• Reliability and security management: responsible for ensuring correct functioning of the system through several

hardware and software related faults and also ensures protection of sensitive user information.

In Section 3, we shall explain context and service management functions along with the related reliability and security
issues associated with them.

Various runtime supports are necessary for the underlying execution environment while running PvC applications, and
they can be seen as an extension of the embedded operating system, which provides functions of scheduling of tasks, inter-
process communication (IPC), memory control, and power control (in terms of, voltage scaling and component activation
and inactivation). The need for runtime support in PvC middleware comes from the fact that the hardware and firmware
of the sensor nodes or other small embedded devices may not always provide enough support for the implementation
of the middleware services described above. Runtime support in PvC middleware includes support for local processing,
communication, energy management, and storage. More specifically, the support is provided for multi-thread processing,
smart task scheduling, and synchronization of memory access.

2.4. System architecture

PvCmiddleware architectures adopt either top–down or bottom–up design choices depending on the systemmodel and
application requirements.

Top–down approach is a software design technique, which describes the system functionality at a very high level, and
then partitions it repeatedly into more detailed levels, gradually refining the design at each step, until the detail is sufficient
to allow coding. Bottom–up design approach is the reverse, where the design process starts with several small parts and
gradually composes them to build thewhole system.Many existing PvCmiddleware, such asGaia, Aura, One.World, CORTEX,
and AoC, are built in a top–down model. PICO/SeSCo middleware supports both top–down and bottom up approaches.

Systemarchitecturesmostly focus on two important aspects—mode of system control andmode of interaction among system
components. Mode of system control can be either centralized or decentralized. For centralized control, there will be some
central component which controls the rest of the PvC devices and makes decisions on their behalf. In case of centralized
systems, certain functions in the central entity are responsible to free resources in other entities. Centralized systems have
a single point of failure. In case of dynamic PvC environment, maintaining data in the central entity is quite costly. For
decentralized control, no single device takes any final decision, instead, various devices are supposed towork collaboratively
in order to reach a global decision.

While Gaia, Aura, One.World and AoC assume a centralized control, CORTEX chooses the decentralized control model.
PICO/SeSCo, however, uses a hybrid approach. In Gaia, the Gaia kernel is the management and deployment system for Gaia
components. Aura task manager coordinates the task migration, monitors quality of service (QoS), and adapts user tasks.
AoC has an Environment Manager (EM) to manage abstract models of the environment, and a TaskManager (TM) to capture
the knowledge about user needs and preferences for each activity. CORTEX allows interaction of a very large number of
autonomous components in a wired environment. System control in PICO/SeSCo is hierarchical in nature, in which resource
rich devices perform management functionalities for resource poor devices.

Mode of interaction among system components can be facilitated using any available communication primitives.
The usual choices made by existing PvC middleware are message passing [41], tuple space [42], and publish/subscribe
(pub/sub) [43,44]. Message passing is a direct interaction paradigm in which communication is made by the sending
of messages to recipients. Tuple space and publish/subscribe are indirect interaction paradigms. In tuple space, entities
communicate with each other through the tuple space (see Table 2).

Aura, CORTEX and AoC use the pub/sub approach. In Aura, context observers report relevant context to the TaskManager
and the Environment Manager. The CORTEX environment surrounding the application may act either as a producer or
as a consumer of information while interacting with smart components. State or state changes of the environment are

V. Raychoudhury et al. / Pervasive and Mobile Computing () – 7

Table 2
Comparison of system architecture of PvC middleware systems.

Structure design Behavior
Control Interaction

Gaia Top–down Centralized Message passing, Pub/sub
Aura Top–down Centralized Pub/sub
PICO/SeSCo Top–down and Bottom up Hierarchical Message passing
One.World Top–down Centralized Tuple space
CORTEX Top–down Decentralized Pub/sub
AoC Top–down Centralized Pub/sub

considered as events. They are captured by sensors and disseminated to interested sentient objects in the system. Gaia
system components use both pub/sub and message passing approaches. Events are used to notify entities in the active
space about added or removed resources, error conditions, file system changes, and application state changes. Message
passing-based interaction is used for communication among components using CORBA [45]. It is possible to port Gaia to
other communicationmechanisms including SOAP [46], RMI [47], or customized implementations. PICO/SeSCousesmessage
passing-based communication among software agents, called delegents. One.World uses a tuple space-based approach,
where events serve to explicitly notify applications of changes in their runtime context.

2.5. Reliability and security supports

PvC applications are generally human-centric (elderly or child care, health care, etc.) and aim to provide people with
unfaltering service support all the time. Depending on the nature of the PvC application, the sensitivity of the reliability
issuemay vary. Consider cases of health-care or elderly care, whichmay even lead to loss of lives if the system fails to detect
the fall of an old person or the sudden deterioration of a patient’s condition, and thereby refrains from informing the doctor.
The same goes for structural healthmonitoring and traffic accident detection applications. So, reliability or availability issues
cannot be compromised when human safety is concerned.

Security is anothermajor concern of PvC,wheremultiple users interactwith each other over the network. In different PvC
applications, such as service discovery, users express their preferences and the devices owned by different users interact
with each other while discovering services. So, there is always a high chance of giving away user’s personal information.
Also, many times, it is required to deduce user intent based on available contextual information, which is also an equally
vulnerable security issue and needs to be addressed during system design.

Reliability and security in the PvC environment can be considered as cross-layer supports (Fig. 2) that span through the
different layers of the PvC middleware from bottom to top. In this paper, we shall discuss the reliability and security issues
associated with context and service management functions, as they are the core system services and have the maximum
effect on the system operations.

3. Pervasive computing middleware services

In this section, we shall describe the core services provided by PvC middleware systems, in general. Section 3.1 will
discuss context management service in detail, and Section 3.2 will discuss service management service. In Section 3.3, we
shall elaborate the reliability and security supports available for context and service management functions in existing PvC
middleware systems.

3.1. Context management service

Context has been defined [48] as ‘‘any information that can be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a user and an application, including the
user and applications themselves.’’ Contexts can be separated into several categories, such as: physical contexts, such as
noise, light and temperature; computing contexts, such as network condition, CPU, memory, etc.; and user contexts, such
as location, activity, status, social relationships, etc.

Research in context-awareness can be classified [49] into the following four primary areas—context acquisition, context
storage, contextmodeling, and context reasoning. Context acquisition is the process of collecting raw context data fromvarious
context sources. Raw context data can be collected either from a single sensor node, or by aggregating context data available
from multiple sensor nodes. The collected context data then need to be stored for further processing. The raw context
tends to be noisy and inconsistent, which calls for proper context pre-processing, inconsistency detection and resolution
mechanisms. After processing, context is represented using particular pattern or design descriptions, called context models.
Context modeling is about constructing high-level abstraction of contextual data and building relationships among them.
Context reasoning is the process of deriving high-level contexts from elementary raw context data and also about deriving
implicit contexts from explicit contexts.

8 V. Raychoudhury et al. / Pervasive and Mobile Computing () –

In the elderly care PvC application scenario described in Section 1, we found the use of multiple sensor nodes to collect
user context information for making situation-aware decisions. Several wearable sensors, such as heart and pulse rate
monitors and blood pressure sensors periodically collect data about the user’s physical condition and process it to detect
possible abnormalities. Collected data are stored for a future study of the user’s long-term physical condition. The wearable
fall detector combines inputs from more than one sensor. The first is the impact sensor, which detects an impact over a
threshold value which may have been caused by the user falling down, and the second is a posture sensor, which detects
a reclined posture of the user which remains unchanged over a time frame. After detecting these contexts correctly, the
two sensors logically deduce that the user might have fallen down and lost consciousness. So, the usefulness of context
acquisition and context reasoning are crucial in the functioning of PvC applications. Below, we shall briefly describe various
existing techniques of context acquisition, modeling, and reasoning.

3.1.1. Context acquisition
Context acquisition, which is a prerequisite for context-aware applications, refers to a process of gathering contexts from

various context sources. Contexts can be captured through sensing devices (e.g., sensors, actuators and agents) and virtual
sources (e.g., inference and prediction). Physical contexts are collected using various physical sensors, such as temperature,
heat, magnetism, and pressure sensors, or chemical, mechanical, sound, and light sensors. Also there are motion, flow
(for liquid and gas), and orientation sensors. Computing contexts are collected through operating system primitives (Iostat,
Vmstat, Netstat) and user-levelmodules (SNMP, Odyssey, CongestionManager), andUser contexts are captured via computer
vision, signature matching, etc. Though different types of contextual information are necessary for different applications,
the most used context in PvC applications is location.
Context acquisition.

In the sensor layer, there are two primary methods to gather contexts: event-driven and query-based. The event-based
method allows applications to specify their interest in certain state changes of the data, called an event. Upon detecting such
an event, themiddleware sends an event notification to applications interested in that event. Thismethoduses asynchronous
communication, and is suitable for resource constrained PvC environments. This method is applied widely in TinyDB [50],
DSWare [51], Mires [52] and Impala [53]. In the elderly care scenario, the context acquisition for user fall detection is
considered as an event-based one, where a user’s fall event detection process is kicked off by an impact (Mr. Smith hitting
the floor) trigger.

For the query-based method, applications send queries to sink nodes asking for certain kinds of contexts and the sink
nodes then collect and aggregate sensor readings to satisfy the query. The query-basedmethod allows database-style query
operations to be executed among sensor nodes and sink nodes through a declarative, SQL-like but distributed interface [54].
This method is used by projects such as TinyDB [50], Cougar [55], SensorWare [56] and CACQ [27,57].
Context fusion.

Raw context data collected by multiple sensor nodes are eventually transmitted to the base station for processing. Since
sensor nodes are energy constrained, it is inefficient for all the sensors to transmit the data directly to the base station. Data
generated from neighboring sensors is often redundant and highly correlated. In addition, the amount of data generated
in large sensor networks is usually enormous for the base station to process. Hence, we need methods for combining data
into high-quality information at the sensors or intermediate nodes which can reduce the number of packets transmitted
to the base station, resulting in conservation of energy and bandwidth. This can be accomplished by data aggregation or
fusion. Data aggregation [58] is the process of aggregating data from multiple sensors to eliminate redundant transmission
and provide fused information to the base station in an energy-efficient manner while reducing latency. Data aggregation
usually involves the fusion of data from multiple sensors at intermediate nodes and transmission of the aggregated data to
the base station (sink).

Data aggregation in sensor networks has been investigated extensively, and there exist several well-written survey
papers [58,59]. PvC middleware can adopt prevailing data aggregation techniques used in WSNs. Data aggregation often
requires resolving inconsistency between data from multiple sources and also deriving multi-dimensional relationships
between different data items. Inconsistency between data items can be detected using several probabilistic and logic-based
methods, such as Bayesian Networks [60,61], First-order Logic [62], Ontological [63,64], and Dempster–Shafer theory-based
techniques [65,66].

3.1.2. Contextual data storage
Past research on mobile data management was based on the client/proxy/server model, where mobile/wireless devices

acted as consumers of data stored on servers typically residing on the wired network. However, mobile devices in PvC
environments consider not only centrally placed data sources, but even the other mobile peers which are connected in
an ad hoc manner and act simultaneously as producers and consumers of data. Data management in these highly dynamic
setting [67]must consider issues such as frequent change of data and data source based on location and time, lack of a global
data catalogue, frequent disconnection among peers, and data synchronization and coherence problems. In this section, we
discuss some of the aforementioned issues which are related to contextual data management in PvC environments. Storing
raw context data collected from numerous sensor nodes is a non-trivial issue in designing any PvC application. Existing data
storage techniques developed forWSN cannot be directly applied for data management in PvC due to the following reasons.

V. Raychoudhury et al. / Pervasive and Mobile Computing () – 9

Firstly, data in PvC comes from multiple sources (e.g., different types of sensors and other smart entities), and to store
and maintain such a vast amount of heterogeneous data is rather difficult. Since, there can be multiple sources of same
data, resolving redundancy and inconsistency is often necessary. Different data sources may use different data formats
and/or media formats. Also contextual data is often spatially distributed, and hence, deciding where to store contextual
data (people, space, and objects) is important. Different policies for maintaining privacy and security may be required while
collecting context data at different sources.

Secondly, since the data values in PvC change frequently, the relationships between different data items also require
updates. This is especially challenging as data items can share multiple contextual relations with other data items in terms
of spatial, temporal, social, and logical contexts. Therefore, in order to achieve low update delay, it may be necessary to
store related data items at physically close locations. Users of PvC applications often want to navigate through the high-
level relationships among the data items. Moreover, change in data values may start cascading contextual changes in other
smart objects if they are contextually connected.

Finally, the data sources and consumers are extremely dynamic in PvC systems. They can join and leave at any point of
time, which changes data sources randomly. Also, the user’s interest in particular data can change with the context.

So, the data management system for a PvC environment must guarantee ubiquitous data access for users. The user
must have a seamless data access experience and the QoS of data access should be adequate in terms of low latency, high
availability and correctness and relevance. Also, the system should understand the user’s intention and provide the required
data proactively.

Data storage in a PvC environmentmust take care of two issues—managing large volumes of data andmanaging contextual
relations between data objects. A large volume of data can be managed by distributed and hierarchical storage systems.
Hierarchical system organization is an efficient tri-stage data processing technique, where tags, sensors, and actuators are
attached to physical objects that are at the lowest level. The sensory devices contain a textual description of the physical
object and perform specified functions and additional actions. The intermediate level contains multiple static or mobile
sub-stations associated with a physical location. They collect and maintain data from nearby objects and possess larger
storage capacity than tags. Sub-stations forward aggregate object information to the base-Station, which has large storage
and processing capacity, and is usually connected to a constant power source.

Distributed and hierarchical storage systems often support massive data storage and can cope with frequent changes
of data. They allow P2P search and query. One such example is Context Distributed Database Management System
(CDDBMS) [68], where for each piece of context a master copy resides at a central point of access (home node), and the
replicas roam and operate in a remote mobile node. The mobile object handling mechanism is based on a chain of pointers
from the home node to the remote mobile node. Another example is Spacelog [69], which enables contextual data storage
for smart spaces such as laboratories, classrooms, libraries, homes, clinics, shops, restaurants, construction sites, etc., and
can be regarded as a special database for a physical environment. The context data collected can be about people, facilities,
artifacts and spatial contexts such as temperature distribution, air quality, noise level, sound source, etc.

P2P Context Storage Technique [70] is another technique where multiple context producers, known as ContextPeers, are
interconnected into self-organized semantic P2P network. Peers with semantically similar contexts are grouped together.
Context producers (‘ContextPeers’) produce contexts and store context data as RDF triplets. Context-query is parsed using the
RDQL (RDF Data Query Language)—based query engine. The SCS protocol undertakes overlay construction andmaintenance,
and query routing.

3.1.3. Context modeling
Contextmodel is a pattern or description to represent context. After context acquisition has been done, contextmodeling

and representation is necessary to validate the integrity, structure and data of the collected context information. Efficient
context models can support—querying current and historical contextual information, deriving high-level contexts from raw
context data—and are easy to extend, so that new context types can be added without affecting existing information. Many
context models have been developed over the past decade, ranging from simple to sophisticated complex models. Based on
the data structure used for expressing and exchanging contextual information, papers [28–30,49] have summarized context
models that have been proposed earlier. Here we introduce the recent advances in context modeling.

(1) Key-value pair context model: This is the simplest type of context modeling technique, which uses key-value pairs
to represent attributes and corresponding values describing contextual information, e.g., <temperature, 25 °C>. It
has achieved widespread success in early distributed service frameworks to represent location information or the
capabilities of services, e.g., in [71,72]. Then, service discovery is performed by matching key attributes. Though tuple-
based techniques are easy to implement and manage, they are inefficient for complex and sophisticated context
representation and support only simple context queries based on text stringmatching. Also they are not verywell suited
for context reasoning.

(2) Logic-based context model: A variety of logic-based context models [73–76] have been proposed by researchers. Cabot
middleware project [77–79], uses a first-order logic-based context model which is designed for checking and resolving
context inconsistency. Many PvC middleware (e.g., Gaia) use context model based on first-order logic and Boolean
algebra. In this form, context is usually represented as (<context type>, <subject>, <predicate>, <object>). E.g.,
(Temperature, Room A, is, 25 °C), or more complex constructs like the following one, as used in GAIA—Context (Number

10 V. Raychoudhury et al. / Pervasive and Mobile Computing () –

of people, Room 2401,>, 4) AND Context (Application, PowerPoint, is, Running)⇒ Context (Social Activity, Room 2401,
Is, Presentation).

(3) Object-oriented context model: Object-oriented techniques for context representation make use of the merits of the
object-oriented approach (e.g., encapsulation, inheritance, and reusability) to represent contexts and can be accessed
and modified through accessor and mutator methods. Several representative context models for the object-oriented
technique include, cue [80] at the TEA project [81], and Active Object Model at the GUIDE project [82]. However, object-
oriented context models are difficult for developers as they must systematically analyze and design the entire context-
aware system. In addition, it is nontrivial to update and optimize the context-aware system as time goes on.

(4) Markup context model: The markup model represents context using a hierarchical data structure consisting of markup
tagswith attributes and content. The tags can be interpreted by devices to control how contexts should be organized and
exchanged among devices. The twomost popular markup context models are User Agent Profile (UAProf) standard [83],
which captures capabilities and preferences for wireless devices, and Composite Capabilities Preferences Profile (CCPP),
which describes device capabilities anduser preferences and is often used to instruct the adaptation of content presented
to devices [84]. However, they are limited by their pre-defined hierarchy and restricted overriding mechanisms. Some
other markup context models are Context Extension [85], Comprehensive Structured Context Profiles (CSCP) [86],
Pervasive Profile Description Language based on XML [87], ConteXtML [88], Centaurs Capability Markup Language [89],
and the note-tags of the stick-e notes [90]. However, markup context models suffer from several problems in capturing
various types of contexts, capturing relationships, dependencies, timeliness andQoS of contexts, inconsistency checking,
context reasoning, and removing uncertainty from contexts [71,91].

(5) Ontology-based context model: The ontology-based context model makes use of Resource Description Framework (RDF)
and Ontologies recommended by W3C, which incorporate semantics into an XML-based representation. A variety
of RDF-based and ontology-based context models have been proposed [92–98]. Ontologies and RDF are promising
techniques to model contexts because of their formal expressiveness and the ability to infer contexts. However, they
often represent incomplete ontologies (i.e., construct deficit) and ambiguity of ontologies for given contexts [99]. They
are also seriously limited by inexact reasoning [100].

In the elderly care scenario proposed earlier, the acquired context information can bemodeled as simple key-value pair or
by using first order logic.While simple context elements, such as the body temperature, blood pressure, and heart rate ofMr.
Smith can be modeled using key value pairs, the fall detection requires more advanced logic-based context modeling. The
fall detection logic can be represented as (Mr. Smith, has, Physical impact > Threshold) AND (Mr. Smith, Posture: reclined,
>, T time) ⇒ (Mr. Smith, state, fallen and unconscious). In the following sub-section we shall study the existing techniques
of context reasoning.

3.1.4. Context reasoning
Context reasoning refers to a process of inferring high-level implicit context information based on the existing low-level

explicit context information. Existing context reasoning techniques can be classified into two types—exact reasoning and
inexact or fuzzy reasoning. Exact reasoning techniques incorporate Bayesian network based [60,61], logic-based [62], case-
based [101,102], ontology-based [95,103], and rule-based [104] techniques, whereas, inexact reasoning techniques include
evidence-based [100,105], and fuzzy-based [106,107] techniques.

(1) Exact context reasoning: Bayesian networks can be regarded as a canonical reasoning technique, which employs
probability graphs to represent contexts. Though it can be easily tailored to different context models, yet, it is seriously
limited by its exponential computation overhead, and requirement of exhaustive and exclusive hypotheses. Case-based
reasoning infers contexts based on the past cases. However, it cannot accurately measure the similarities among cases.
Logic-based exact context reasoning is inefficient for incomplete, imprecise, and fuzzy contexts, often available in PvC
environments. Similarly, Rule-based reasoning infers contexts using pre-defined rules. An open issue in the rule-based
reasoning technique is dynamic generation of rules depending on varying contexts. Ontology-based reasoning schemes,
backed by powerful software supports [63,64], incorporate semantics into context representation and reasoning, and
are quite popular. They implicitly assume that all ontologies related to a specific domain are pre-defined. However, this
supposition does not always hold in PvC environments.

(2) Inexact context reasoning: evidence theory, also known as Dempster–Shafer theory [65,66], is used for inexact context
reasoning. Evidence theory is used to construct ground truth from anecdotal evidence and to provide inaccurate
predictions. This technique incurs heavy computation overhead and is inefficient in representing context semantics.
Another technique to deal with imprecise and incomplete contexts is fuzzy context reasoning, which employs fuzzy set
theory. This technique provides amanner of combining captured datawith expert knowledge. In [108], a fuzzy reasoning
scheme based onMamdani inference systems is proposed, and it assists mobile applications in fuzzy context reasoning.
Comparedwith exact reasoning, inexact reasoning schemes cannot get the accurate implicit contexts and thus theymay
be unsuitable for PvC applications which require accurate contexts.

In the elderly care scenario depicted in Section 1, context reasoning can be used to deduce the fall event of Mr. Smith,
and to carry out the required operations regarding his treatment and hospitalization. Once all the context information is
available, the application can use pre-defined rule-based reasoning to decide on the course of actions. E.g., (IF Mr. Smith fell

V. Raychoudhury et al. / Pervasive and Mobile Computing () – 11

on the floor) AND (IFMr. Smith is unconscious) AND (IFMr. Smith has abnormal heart rate) THEN inform the physician about
Mr. Smith’s condition. After the physician has been contacted, he may require deductive reasoning to conclude if Mr. Smith
had his lunch and whether he took his medicine before he fell down. Also, he may need to know if Mr. Smith is bleeding due
to the fall. The application requires discovering simple or composite services specific to those needs. A dedicated service
management module in a PvC middleware can take care of these issues. In the following section, we describe the functions
of such service management modules.

3.2. Service management service

PvC applications are mainly concerned about services, instead of the individual nodes that provide them. Services can
come from a single node or can be composed of a set of nodes. Due to their service-based nature, pervasive systems require
strong supporting mechanisms for service management. Service management comprises three main operations—service
discovery, service composition, and service access, and in the following paragraph we shall define them according to our
understanding.

Services are central to the service management techniques, and they can be defined as any hardware or software
functionality (resources, data or computation) of a device that can be requested by other devices for usage. For example, the
media player on a mobile device can be considered as a service which provides music and movie playing functionalities
for that device, and can be requested by peer devices. Service discovery is a process by which any potential user (human or
device) requiring a service, can find services on peer devices, and can determine how to access or utilize the discovered services.
Service composition, on the other hand, is a process of identifying and combining component services to compose a higher-level
service. Service access ensures that users requesting particular services can keep using them despite user or service provider
mobility, device failure, or network disconnection.

3.2.1. Service discovery
Service discovery enables devices and services to properly discover, configure, and communicate with each other

with minimal or no human intervention. However, service discovery has been investigated in traditional distributed as
well as enterprise environments. Service discovery in enterprise networks is restricted, as they consider mostly static
and resource-rich computing devices connected through wired or infrastructure-based networks. Moreover, services in
enterprise networks operate within a fixed scope, and hence, they can be protected by firewalls and can be managed by
system administrators on a centralized basis.

PvC environments, on the other hand, are far more dynamic and heterogeneous. When combined with a purely ad hoc
wireless network structure, the chances of occurrences of faults increase greatly. Moreover, due to their ad hoc nature
compounded with node mobility, it is not possible to centrally control PvC systems through system administrators. Devices
must act through localized coordination in order to discover services anduse them reliably. As services in pervasive networks
are scattered in the ambience, network-wide service discovery poses a significant challenge. However, the most important
challenge regarding service discovery in the PvC environment lies in figuring out how to satisfy human users seamlessly.
Integrating people in smart environments requires robust security and reliability supports for service discovery applications.

Several well-organized survey papers [31–33] on service discovery systems in mobile and PvC environments exist in
the literature. Prevailing service discovery protocols (SDP) are usually classified based on their underlying network types,
discovery models, and discovery processes (see Fig. 3). Based on the network structure, PvC environments can be eitherwired
or wireless.

Service discovery protocols employ either a directory-based or a directory-less discovery model. For the directory-based
model, there is a dedicated directory node along with the service providers and service consumers. The directory node
maintains service information and processes queries and announcements. Some directories provide additional functionality.
For instance, Ninja SDS [109] directories support secure announcements and queries. Directory-based systems are usually
more efficient and scalable than directory-less ones. Based on the number of services and the size of the network,
directory-based systems can use a single centralized directory or multiple directory nodes distributed across the network
at strategically important locations. Depending on the organization of the directory nodes, directory-based models can be
distinguished as either flat or hierarchical. In a flat directory structure, subdirectories have peer-to-peer relationships. For
example, within an INS [110] sub-domain, directories have a mesh structure: a directory exchanges information with all
other directories. Salutation [111] and Jini [112] can also adopt flat structure. On the other hand, a hierarchical directory
structure follows the DNS model in which information, advertisements, and queries are propagated up and down through
the hierarchy. Parent nodes store information of their children, and thus in this type of system, the root node may possibly
become a bottleneck. Examples include Ninja SDS [109] and Rendezvous [113], both of which have a tree-like hierarchy of
directories.

Discovery processes are of two types—active/pull-based/query-baseddiscovery andpassive/lazy/push-based/announcement-
based discovery. In the query-based approach, a party receives an immediate response to a query and does not need to pro-
cess unrelated announcements. In the announcement-based approach, interested parties listen on a channel for periodic
announcement from service providers. Many protocols support both approaches.

Based on the nature of the underlying network environment, service discovery protocols adopt different designs.
Wired networks consist of resource-rich and static computing devices connected through high-bandwidth network cables.

12 V. Raychoudhury et al. / Pervasive and Mobile Computing () –

Fig. 3. Classification of existing service discovery protocols.

Examples of these types of systems are enterprise networks. Service discovery protocols for wired and infrastructure-based
environments [109,112,114–120] are usually unsuitable for usage in PvC environments. Wireless networks, on the other
hand, can be employed either in static or in mobile settings. Static wireless networks mostly contain high bandwidth
network backbone infrastructure, which supports the networking needs of the participating computing entities. Mobile
wireless networks, however, lack any such infrastructure support. They create an ad hoc composition of multiple resource-
constrained portable and handheld devices connected by unreliable and intermittent wireless connectivity. PvC systems are
characteristically closer to the ad hoc wireless environment due to their limited resource availability, extreme dynamism
and unreliable network connections.

Service discovery in ad hoc wireless environments consist of multiple resource-constrained and possibly mobile devices
which provide services to their peer devices. Existing service discovery protocols for ad hoc environment can be directory-
based or directory-less.

In the directory-less service discovery protocols, the service information is stored with the service providers themselves.
There are two distinctly identified methods for directory-less service discovery in ad hoc networks. The first method works
by broadcasting service information as well as service requests and the second approach works by building DHT-based P2P
overlay [121–123,109,124,125] for mobile ad hoc networks (MANET).

Broadcast-based service discovery can adopt either the push or pull model. In a push-based discovery model, service
advertisements are distributed by the service providers to all the nodes in the network. A pull-based discovery model,
however, necessitates a service requestor to broadcast their service request to other nodes until a matching service is found.
The broadcasting nature of this model is grossly unsuitable for the mobile ad hoc networks due to their high demand of
bandwidth and energy. So, these protocols can only be used in small scale networks. Some of the protocols which use
broadcast policy are Bluetooth [126], DEAPspace [127], Allia [128], GSD [129], DSD [130], and Konark [131].

Among DHT overlay-based service discovery protocols, there are several MANET-oriented DHT systems [123,124,132]
that integrateDHTwith different ad hoc routing protocols to provide indirect routing inMANET. Ekta [123], CrossROAD [124]
andMADPastry [132], each integrates Pastry [133]withDSR [134], AODV [135], andOLSR [136], respectively, to share routing
information between the network layer and application layer. An opposite approach is adopted by virtual ring routing
(VRR) [125], which is a network-layer routing protocol inspired by overlay routing on DHTs, and can significantly reduce
traffic compared with broadcast-based schemes.

The directory-based service discovery in ad hoc networks is thwarted by the resource-poor nature of devices and their
mobility, which makes it difficult to choose single centralized directory nodes. To cope with this limitation, directories
are dynamically selected frommobile nodes, considering their available resources, such as processing power, memory size,
battery life, or node coverage, etc. It is true that dynamic directory assignment incurs extra overhead to the network, because
directories should be selected and their identities should be informed to the rest of the network nodes. Moreover, directory
nodes must be constantly available on the face of node failures and dynamic topology changes and network partitions. Even

V. Raychoudhury et al. / Pervasive and Mobile Computing () – 13

with these difficulties, a directory-based system proves to be more scalable and fault tolerant than a directory-less one
in these environments. Moreover, using directories will most certainly decrease the discovery delay and will enhance load
balancing among service providers, so as to reduce the load on individual services, and enhance the overall service discovery
performance. Examples of directory-based service discovery protocols for ad hocwireless networks are—Service Rings [137],
Lanes [138], DSDP [139], Splendor [140], and some other schemes without any proposed scheme-name, like [141–143]. The
basic approach followed by these protocols is the same. They select some nodes as directories based on some parameters
and then form an overlay or backbone network connecting those nodes.

In this section,we described the service discovery actions performed by existing systems and protocols for different types
of network environments with a special focus on those being used for PvC environments. Based on the presence or absence
of a service discovery registry, we have also classified the service discovery protocols as directory-based and directory-less.
Service discovery in real life is often subject to several constraints based on user requirements, and hence, a single service
provider may not be able to meet all the needs of a user. In certain cases it may be necessary to compose a service by
combining the elementary services provided by multiple providers. In the following sub-section we shall study the service
composition functions.

3.2.2. Service composition
Basic functions of service composition include—means to specify the preferences by users and service descriptions by service

providers, finding service providers in the environment matching user preferences, selecting the best suited service, and combining
elementary services to compose a higher-level service.
Describing services.

Service providers describe their services in standard formats and the service requestors also need to specify their requests
for composed service following standard techniques. Belowwe summarize different service descriptions adopted by service
providers and service requestors.

Service providers often describe their services as atomic functionalities. E.g., in the elderly care example scenario
described earlier, for the fall detection there are two types of atomic services—‘‘fall sound detection’’ and ‘‘body orientation
detection’’. During a service composition process, service providers may have the simple knowledge of their atomic services
or the additional knowledge to decide whether it can be a part of a service composition workflow. E.g., the two atomic
services for fall detection must be able to decide that they have roles in the service composition workflow—‘‘detect the fall
of Mr. Smith’’. Both these processes are dependent on the service description process adopted by the service provider.

Users or service requestors can specify their service request either in high level or in low level. In the high-level
description [144], the requested service is specified as a goal to be achieved, e.g., the user queries the roomsaying ‘‘determine
the cause ofMr. Smith’s fall’’. In this case, the intelligent devices in the roomhave to figure out their roles andneed to perform
accordingly. High-level service description can use natural languages or ontology terms. In the low-level description [145],
the requested service is specified as a workflow, given the set of atomic services to be composed. This is easier for the
participating devices, as they know their roles directly from the workflow specified by the user.
Specifying composition plan.

Service composition system tries to provide the user requested service by composing the available services. It tries to
generate one ormore composition planswith the same or different services available in the environment. It is quite common
to have several ways to compose a service, as the numbers of available services in PvC environment are abundant.

One critical challenge in developing a service composition plan is regarding how to describe appropriately the services
provided bymultiple service providers, and how to represent services requested by users. Many servicemodeling languages
have been developed towards achieving that objective, and they can describe functional and non-functional attributes of
services. Existing service composition approaches can be characterized by the different expressiveness of the modeling
language and can be classified as below.

• Low-level requested service description—In this approach [137–139,143], the requested service is specified as a workflow,
given the set of atomic services to be composed.

• High-level requested service description—In this approach [115,120], the requested service is specified as a goal to be
achieved.

• Workflow-provided service description—While the majority of solutions assume that service providers have limited
knowledge and can only describe atomic functionalities that they provide, in this approach [135] it is assumed that
service providers are able to specify workflows in which they can take part.

In the existing literature, there are mainly three different techniques of drafting a composition plan. The first one utilizes
the classical planning technique used in artificial intelligence (AI). In this approach [127,139,142], the composition of atomic
services into composite service is viewed as planning. Atomic services are mapped into planning operators, a planning
algorithm links them, and the generated plan constitutes a composite service. The second technique usesworkflow, in which
a composite service is broken down into a sequence of interactions between atomic services [137,138,143]. The system
generates a customized workflow that describes how various services should interact with one another as well as with the
requestor. Finally, there is the historical data-based composition technique [117], which uses datamining in order to discover
previous service composition and usage patterns which can help future service composition.

14 V. Raychoudhury et al. / Pervasive and Mobile Computing () –

Selecting service providers.
It is usual to have many services providing the same or similar functionalities. In that case, the services are evaluated by

their overall utilities using the information available from the non-functional attributes. Service selection is done based
on user specifications. Either, all the matching services are sent to the user for manual selection [146], or the system
automatically chooses the best service that matches user requirements [145,147]. Selection is usually performed based
on some application context [148], quality of the network, or service QoS parameters [149]. An example of context-based
service provisioning is finding all Japanese restaurants in the area close to the user’s current location. QoS-based service selection
is carried out with the help of several metrics, such as cost of usage, time of availability, etc.
Service composition architectures and techniques.

Service composition architectures can be centralized, distributed, or hybrid, the last one being a composition of the
previous two approaches. In the centralized approach [147], there is a central coordinator assigned for performing
service compositions. The coordinator can be fixed, or can be chosen at run-time, and can even be changed during the
execution [150], if need arises. In the decentralized approach, no central coordinator is present and the composition is
achievedbypeer-to-peer interactions among theparticipating services. In thehybrid approach [19], distributed coordinators
are used for service composition.While the centralized approach is prone to a single-point-failure, the distributed approach
is quite difficult to implement in the highly heterogeneous PvC environment. So, the hybrid approach may strike a balance
between these two extremes.

Siebert et al., have proposed a fully decentralized service composition approach [151], in which service composition is
carried out through localized interactions between service providers. The problem of identifying a composite service graph,
similar to a request graph input by the user, has been modeled as a sub-graph isomorphism problem, which is proven to be
NP-complete. Unlike previous algorithms that rely on global knowledge, in this algorithm each device only maintains local
state information about its physical neighbors and builds an overlay network. Services reside on the device and component
services construct sections of the composition graph by interacting with neighbors. Finally, all such fragmented sections are
interconnected to come up with the requested composite service.

Service composition techniques can be either static or dynamic, based on whether the solution provides provision
of dynamically changing the composition plan in the middle of an ongoing service composition process. Even after a
composition has been successfully carried out and the user is accessing the composed service it may be required to replace
a component service due to failure or unavailability caused by some other reasons. If the service composition solution
can perform this replacement automatically, and can add or remove component services without halting the ongoing
composition or service execution process, then the composition technique is dynamic, otherwise it is static.

Service discovery and composition are crucial services required to be provided by a PvC middleware. In the elderly care
application scenario introduced in Section 1 of this paper, we describe an example service composition operation, which
requires the application to discover whether Mr. Smith had his medications before his fall. This high-level service is actually
composed of three elementary services, such as, (1) detect whether Mr. Smith opened the medical cabinet before his fall
(by video footage), (2) detect whether the medicine has decreased by the daily usual amount (by level counter), and (3) (if
possible) detect whether Mr. Smith has actually taken the medicines (by video footage). The results of these elementary
services can then be composed to deliver a higher-level service.

3.3. Reliability and security support

In this sub-section,we shall discuss fault tolerance and security support available for the context and servicemanagement
modules. Faults in PvC environments can be of two types—infrastructure-related and software and service-related. While the
infrastructure-related faults cover hardware failures, such as devices and network failures, software and service-related faults
are concerned with failures of pervasive software and system services.

Privacy and security issues have some conflicts with the pervasiveness property of a smart application. Sometimes
PvC applications require user’s location for providing location-based services, such as being discovered by friends in the
neighbourhood. However, divulging user’s locationmay have severe privacy concerns. Similarly, in the elderly-care scenario
depicted in this paper, whenMr. Smith is unwell, his crucial health informationwill have to be sharedwithmultiplemedical
care-givers, and it may not be possible to verify their identity all the time. So, there is a chance that secured personal data
is leaked to unauthorized third parties during the chaos. We can see that ensuring privacy and security of sensitive user
information often requires striking a balance with the application requirements.

Below, in Section 3.3.1, we shall briefly describe various fault tolerance techniques in context management, in order to
ensure quality of context information. Section 3.3.2 discusses techniques to ensure security and privacy of crucial context
data. Similarly, fault tolerance as well as security related issues of service management in PvC have been discussed in
Sections 3.3.3 and 3.3.4, respectively. Finally we shall compare several PvC middleware services with respect to a set of
middleware solutions.

3.3.1. Fault tolerance in context management
The context management module is considered as the brain of a PvC system and any type of failure in this module may

severely disrupt the application functionalities. Usually failures in context management services aremostly due to incorrect

V. Raychoudhury et al. / Pervasive and Mobile Computing () – 15

context sensing and reasoning. One way to improve the context management service operations is to introduce context
pre-processing as well as detecting and resolving context inconsistencies.
Context preprocessing.

Contexts are often noisy and incomplete in PvC environments [152,153] due to incompetent sensing technology. This
produces errors in collected data and their interpretation as contexts. For example, RFID readers just capture 60%–70% of the
tags in their vicinity [154] and the rest goes undetected. Context preprocessing is a function that processes raw contextual
information before context reasoning and interpretation. This function, if implemented, can significantly improve context
quality, particularly when collected contextual information is too coarse-grained.

Context preprocessing on the sensor level is performed either in a centralized, distributed, or hybrid manner. In the
centralized manner, a central node or a centralized module is required to preprocess contexts captured and delivered
by sensing devices. In the distributed manner, sensors and the aggregating nodes have to filter and preprocess their
collected context by themselves. The hybrid design combines the strengths of the former two, in which several nodes are
selected to aggregate their nearby contexts and then combine their results and report them to applications or users. Various
schemes [27,155–158] have been proposed to preprocess raw context in the sensor layer, using Bayesian network, Kalman
filter, linear regression, and other statistical and probabilistic techniques.

In [157], Extensible Sensor stream Processing (ESP) is a data cleaning infrastructure between sensor devices and
applications. The cleaning infrastructure translates raw sensor data into clean data, so that applications are unaffected by
erroneous data. ESP consists of a programmable pipeline of cleaning stages intended to operate on-the-fly as sensor data
are streamed through the system. ESP is designed to be easy to configure and be able to evolve over time.

Context preprocessing in the context level [159,160] has not been studied well. Most of the existing works on context-
aware research implicitly assumes that raw data is accurately interpreted, which is often not true [161].
Context inconsistency detection and resolution.

Context inconsistency detection and resolution is often necessary due to the noisy context data collected at the sensor
layer. Various schemes [77–79,162–168] have been proposed towards that objective.
(1) Context inconsistency detection: In [78], a context-awaremiddlewaremodeled context constraints by tuples, and checked

context consistency by semanticmatching and inconsistency triggers among elements in tuples. Thisworkwas extended
in [79], which proposed ICIA—an Incremental Checking Inconsistency Algorithm, which works using a consistency
computation tree (CCT). In [162,163], ontologies and assertions are used to model contexts and context consistency,
respectively. However, ontology-based schemes have limited capability of removing noise in contexts and they require
that all ontologies related to a specific domain be pre-defined, which is not always possible for common users. In [168],
CEDA evaluates the temporal relationships among collected contexts in asynchronous environments, and checks for
inconsistency among them using happen-before relationships.

(2) Context inconsistency resolution: In [169], a scheme is proposed to resolve inconsistency by following user preferences
or polices in situation evaluations. In [77], a ‘‘drop-bad’’ heuristics-based context inconsistency resolution strategy has
been introduced, which overcomes the shortcomings from ‘‘drop-latest’’ [170] and ‘‘drop-all’’ [171] resolution strategies
proposed earlier, and thus achieves more reliable results. This strategy keeps track of contextual information and
gets rid of outliers using historical information. In addition, [172] proposes a Quality-of-Context (QoC) based solution
for removing context inconsistency and conflict resolution by incorporating quality, which refers to any information
describing contextual information and its worth for a specific application.

3.3.2. Security and privacy in context management
Maintaining privacy is necessary in order to protect user’s personal information. Conventional mechanisms to ensure

security in distributed systems may not be suitable for PvC environments due to extreme dynamism and device resource
constraints. Privacy guarantees how contextual information will be used or passed on. Since users expose plenty of personal
information in a PvC environment, as a result, maintaining absolute privacy is difficult. Security and privacy in context
management has not been thoroughly studied, except for location privacy research which also remains largely unexplored.
Among the existing approaches there are access control, encryption and cryptographic techniques.
(1) Access control: In order to achieve security and privacy, Access Control (AC) is adopted in the majority of projects,

such as Gaia [13] and Context Toolkit [48]. There are several well-recognized AC models—Attributed-Based AC (ABAC),
Discretionary Access Control (DAC), Mandatory Access Control (MAC), and Role Based Access Control (RBAC), among
which ABAC and RBAC are two most popular ACs.

(2) Encryption and cryptography: Conventional cryptographic and encryption methods are inappropriate for PvC
environments, because of the extensive computation overhead incurred by the existing encryption algorithms.
Pseudonymity [173] could be an important solution, using which users can frequently change pseudonyms in order to
avoid being identified by the locations they visit. This can solve the privacy problemdiscussed in the second paragraph of
Section 3.3, where users do not want to divulge their location while willing to use several location-dependent services.
Another solution is anonymity, and can work well to hide the user’s identity in some of the location-based services. E.g.,
if the user wants to be discovered by his friends when he is in a shopping mall, he must use his identity, however, if
the same user wants to be notified about the special pizza price while he is passing through a pizza place, then identity
exposure is not necessary.

16 V. Raychoudhury et al. / Pervasive and Mobile Computing () –

3.3.3. Fault tolerance in service management
Reliability and availability of service management systems are affected, either by hardware failure, or due to user or

service provider mobility. So, ensuring reliability in service management requires those issues to be addressed. Below, we
present an overviewof existing fault tolerance andmobilitymanagement techniques used inwireless network-based service
management solutions, as they are the most suitable ones for PvC environments.

Fault tolerance and mobility management for service discovery in wireless networks.
Fault tolerance in ad hoc wireless environments is challenging compared to traditional wired distributed environments.

The dynamic nature of the environment, device resource-constraints, and unreliable wireless connections, make it hard to
design robust fault tolerant mechanisms. Fault tolerance requires withstanding failure of directory nodes. INS [110] and
LANES cope with directory failure by maintaining multiple copies of service information at different nodes. Most of the
directory-based protocols replace failed directory nodes with newly selected ones.

Mobility management, however, is very challenging in ad hoc environments. Frequent node mobility renders the
topology unstable, and disconnections give rise to inconsistency in service information. In order to maintain consistency of
service and route to service information, either a proactive or a reactive method has been adopted by existing protocols.
In a proactive approach, the participating nodes periodically exchange messages to update information, e.g., a service
provider may send periodic advertisements to update its location. A reactive method, however, updates information based
on events. For example, if a user discovers that a service previously cached by him is unreachable, then he seeks new service
information.

Directory-less service discovery protocols cope with node mobility by adjusting service advertisement rate and the
diameter of announcements. For example, GSD [129] implements a small advertisement time interval for highly dynamic
environments, opposed to a larger value for comparatively stable networks. The advertisement diameter (in number of hops)
is also regulated depending on different mobility situations. Similarly, Allia [128] controls the frequency of advertisements
and the diameter of the alliance considering the mobility of nodes.

Amajority of directory-based protocols for ad hoc service discovery require specialmechanisms tomaintain the directory
structure, called backbone or overlay. These algorithms try to ensure smooth operation by handling node joining or leaving
scenarios, broken connections, network partitions, and partition merges. Service Rings [137], Lanes [138], DSDP [139], Tyan
and Mahmoud [141], and Sailhan and Issarny [142], all proposes similar mechanisms.

Raychoudhury et al. [174], have proposed an efficient and fault tolerant service discovery protocol for MANETs. A virtual
backbone of directory nodes, called directory community, is first constructed by selecting the top K nodes considering
higher resource and lower mobility, to ensure that they are more reliable and less fault-prone. They have modelled
the directory community formation problem as a top-K weighted leader election in mobile ad hoc networks [175], and
develop a distributed algorithm to achieve the objective. Here, the weight indicates available node resources in terms
of memory, processing power or energy. Using the aforementioned directory community, a quorum-based fault-tolerant
service discovery protocol has been proposed. The elected directory nodes are divided into multiple quorums. Services
registered with a directory are replicated among its quorum members, so that, upon the failure of a directory, services
can still be available. This approach guarantees network-wide service availability using the quorum intersection property,
and reduces replication and update costs by minimizing the quorum size.

Fault tolerance and mobility management for service composition.
Given the dynamic and fault-prone nature of PvC environments, service provisioning needs to be dynamic and adaptable

to unpredictable changes. As already discussed in Section 3.2.2, existing service composition techniques can either be static
or dynamic. In static systems, if any of the services fail, service composition needs to start all over again. The majority
of proposed service composition solutions assume static service composition. However, dynamic service composition
approaches [148,176–179] support re-planning of the composed service during the execution of the composition. Services
can be replaced, added, or removed if necessary without starting the service composition processes afresh. Dynamic service
composition is more difficult to implement than static service integration, since every service component of the dynamic
service is being monitored and should be replaced immediately in the case of failure. Dynamic adaptation to contextual
changes [147] may require service re-binding or service execution state transfer as and when necessary.

3.3.4. Security and privacy in service management
Ninja Secured Service Discovery Service (SSDS) [109,180] is one of the earliest proposed methods of securing service

discovery applications. SSDS uses a hierarchical directory-based approach inwhich a user uses his public key to authenticate
with a local server in order to discover services. Service providers specify user privileges and register services with local
servers. Furthermore, communications among different parties are encrypted.

Security in Bluetooth [181] and Universal Plug and Play (UPnP) [182] protocols is based on the traditional authentication
and authorization approaches, where a user has to provide correct credentials to discover and access services. In the trusted
discovery mode of Bluetooth Security, services only interact with a pre-known device that shares a common secret code.
UPnP Security features include several authorization methods, including access control lists, authorization servers and
certificates, and group definition certificates. Though these approaches protect the privacy of the service provider, they
overlook the privacy of the service user.

V. Raychoudhury et al. / Pervasive and Mobile Computing () – 17

Table 3
Comparison of PvC middleware services.

Gaia Aura PICO/SeSCo One.World CORTEX AoC

Context management
Sensing

√ √ √ √

Modeling
√ √ √ √

Reasoning
√ √ √

Service management
Discovery

√ √ √ √

Composition
√ √ √

Hand-off
√ √

Fault tolerance

Device
√ √ √ √

Application
√ √ √ √ √

Network
√ √

Service
√ √

Security and privacy Authentication and access control
√ √

Secured service discovery – – – – – –

Zhu et al. [140,183–186] have carried out significant research in ensuring security and privacy of both the user and the
service provider in service discovery. They have proposed Splendor [140], a secured service discovery protocol for nomadic
users in public environments, which has provisions for protecting user, data, and location privacy. Location-awareness
in Splendor can support location-dependent service discovery with reduced security risks. Splendor can protect users
against eavesdropping and replay attacks. Splendor offers mutual authentication among components, simplifies service
authorization, provides communication confidentiality and message integrity, and supports non-repudiation.

PrudentExposure [183,185], also proposed by Zhu el al., does not require users to actively identify existing services and
service providers. Instead, a user’s program discovers service providers from whom he acquires credentials via code words
specified in the Bloom filter format [187]. This format enables users and service providers to identify each other in one round
of message exchange. After identifying each other, a user and a service provider establish an encrypted channel between
themselves to exchange requests and service information. The approach can protect sensitive information, such as service
information, user identities, user’s presence information, domain identities, service provider’s presence information, and
service requests.

An extension of the PrudentExposure scheme, named as progressive approach, was proposed in [184,186], which is
similar to the former one, in which a user utilizes a program to manage all his credentials, and users and service
providers exchange code words. However, progressive approach uses a different method to exchange code words and
service information, and protects sensitive information by denying unnecessary exposure of the same even to the
legitimate parties. Thus, when a user needs a service, he only authenticates service providers providing a matching
service and excludes other known service providers. Similarly, a service provider exposes his information only after
verifying the legitimacy of both the users and the service. In the progressive approach, users and service providers can
establish mutual trust through multiple rounds of communication while exchanging partial and encrypted forms of their
identities and service information. Any mismatch during the procedure stops the communication and indicates that further
interaction is unnecessary. Because only partial information gets exposed in the unnecessary cases, it is highly likely
that sensitive information is not exposed to inappropriate participants. By using simple strategies, users and service
providers know the number of communication rounds and the number of bits to exchange in each round to reach mutual
trust.
Comparison of middleware services.

Earlier we discussed core system services commonly implemented by PvC middleware systems. The Table 3 compares
the functionalities available inmany of the existing PvCmiddleware services.We compare the contextmanagement, service
management, fault tolerance, and security and privacy features of some well-known PvC middleware systems.

4. Challenging open issues

PvC middleware research has many challenging problems [188,189] that need to be addressed for designing more
efficient middleware systems.

4.1. General PvC research issues

PvC systems are different from existing computing paradigms. Though they bear many similarities with distributed and
mobile computing technologies, still there are many new requirements.

PvC applications aim to assist people with computation support everywhere and all the time. This often requires support
for user and application migration across different PvC environments. Due to the resource constrained nature of PvC
devices, supporting user and application migration in PvC advocates using available resources in the local environment.
This approach is known as resource opportunism. Aura middleware applies this idea in order to support user task migration

18 V. Raychoudhury et al. / Pervasive and Mobile Computing () –

across different environments. Resource opportunism requires dynamic discovery of useful resources matching application
requirements (e.g. for computation and data storage) for smooth, seamless and transparent migration. Also, policies need
to be developed for adapting applications to different environments, both local and remote.

PvC algorithms and protocols must be device agnostic, i.e., the focus should be on information/resources available in
the environment, rather than devices. Applications should be designed at an upper level, where the device and the user
interface has been abstracted. Applications and users in PvC environments are only interested in services or data, and not on
devices.

Most of the existing PvC middleware follow a centralized co-ordination. But, this top–down approach of design
requires re-thinking, given the presence of a very large number of low-power sensory devices and no guarantee of having
a central entity capable of managing all other devices. What is required is an efficient decentralized and bottom–up
approach of system design which will work through spontaneous interoperation and de-coupled coordination among
participating devices. Researchers should think of a design paradigm which can consider the pros and cons of either
design technique and can study how the bottom–up and top–down approaches can co-exist and possibly conflict in future
systems [190].

Also, the PvC environment is extremely dynamic in nature and devices frequently join and leave the environment. In
order to enable the PvC middleware to cope with the dynamicity, the middleware must implement adaptive functionality
with distributed and dynamic deployment and auto-configuration support for newly joined devices.

4.2. Context management issues

PvC applications should be context-aware and adaptive. These objectives can be achieved using situated interactions
which require deciding on a particular situation depending on the surrounding environment (e.g. location, proximity,
physical conditions, social setting, etc.). Situated interaction needs to study the situation context before triggering actions.
Developing smart environments (home, office, meeting rooms) are very much dependent on these types of interactions.
Another challenge in developing context-aware applications is to correctly detect user intention based on the situational
knowledge. This area has many open challenges and requires further investigation. Conflict resolution among the data
sensed by multiple sensor nodes is also open for research.

Another very important challenge concerns storage of contextual data used in PvC applications. Smart systems use
sensors, RFID tags, cameras, etc., and the data produced is becoming overwhelmingly large for the existing infrastructure to
store andmanage. So, developing themeans to store as well as meaningfully access and query the collected data is essential.

4.3. Service management issues

PvC applications are service-based and service discovery and access are common operations to serve user needs. Service
handoff is also necessary to provide mobile users seamless service access by proactively finding new matching services if
the original service becomes unavailable due to any reason [191,192]. Also, many applications may require dynamic service
composition in order to build higher-level services composed of several atomic or lower-level services. Reliable service
management operations for multi-application service provision are absolutely essential for PvC environments. In order to
manage cooperation among a large number of heterogeneous devices and to enable them to adapt to rapidly changing
contexts and scenarios, PvC should enforce self-∗ capabilities, such as autonomic, self-managing, self-organizing, and self-
adaptive behaviour in both infrastructure management and service provisioning [193]. Also, ensuring privacy and security
of services is also important in such dynamic and open environments.

Providing human-centered services (location-based, or proximity-based services) based on the social context of the
user introduces a new class of application in PvC systems [194]. Such services study the user’s physical context (location,
movement, proximity, etc.) and provide services automatically (push-based, depending on user preference) or on a
request–response basis (pull-based).

4.4. Social network-related issues

Nowadays, a new type of application is on the rise, which uses context information of the user’s physical environment
(location, movement, proximity information, etc.) to study user’s individual and social behavior and predict future actions
based on that [195,196]. This approach of using PvC related tools and technologies for studying human dynamics and
social networks can pose many challenging issues, such as developing suitable algorithms to facilitate large scale data
management, providing support for data driven adaptability, managing user’s privacy and security, etc.

5. Conclusion

In this survey, we investigated a large number of disparate PvC middleware solutions and infer that PvC middleware
helps the programmer develop applications in several ways. First, it provides appropriate system abstractions, so that the
application programmer can focus on the application logic without caring too much about the lower-level implementation

V. Raychoudhury et al. / Pervasive and Mobile Computing () – 19

details. Second, it provides reusable code services, such as code update, and data services, including, data filtering, so
that the application programmer can deploy and execute the application without being troubled with complex and
tedious functions. Third, it facilitates system resource management and adaptation by providing efficient control services,
e.g., data management, service management and context management. Fourth, it supports strong system integration by
ensuring tight coupling between the computational and physical elements of the system. Last, but not the least, it enables
system monitoring, and ensures security and privacy as well as fault tolerance and reliability support for developed PvC
applications.

However, middleware research for PvC environment has not quite matured yet. Many researchers propose different
system structures and methodologies, tools and techniques and system support services to help application developers to
design PvC middleware systems. In this paper, we have classified existing techniques adopted by PvC middleware systems
into different classes (e.g., abstractions, programmingmodels, system architectures, runtime-supports, and system services)
and identified their characteristics. We have presented a typical elderly care PvC application scenario in order to highlight
common research issues and challenges in designing such applications. We have then critically analyzed those challenges
and pointed out the need for designing efficient middleware solutions to address diverse and complex developmental
problems. At the end of this survey, we identified some challenging problems and indicated possible future directions of
research.

Though many PvC middleware systems have been proposed in recent times, we hardly see widespread use of any in
real life. Most middleware systems mentioned in this paper have hardly been used outside the academic research labs.
Generally speaking, for the growth of middleware research we must be able to reuse services and functionalities provided
by existing middleware systems while developing support for new and hitherto unattended issues. We must also have
bridging functionality between different custom PvC middleware systems in order to facilitate interactions between them.
E.g., different smart device makers usually employ dedicated middleware systems for their product and this may create
obstacles for device interoperation.

Table of acronyms
Acronym Meaning
AC Access Control
AI Artificial Intelligence
AoC Activity-oriented Computing
API Application Programming Interface
CCPP Composite Capabilities Preferences Profile
CORBA Common Object Request Broker Architecture
DHT Dynamic Hash Table
HCI Human–Computer Interaction
IPC Inter-process Communication
LTE Long Term Evolution
MANET Mobile Ad-hoc Network
MVC Model–View–Controller
NFC Near-field Communications
P2P Peer-to-peer
Pub/Sub Publish/ Subscribe
PvC Pervasive Computing
QoC Quality-of-Context
QoS Quality of Service
RDF Resource Description Framework
RDQL RDF Data Query Language
RFID Radio Frequency Identification
RMI Remote Method Invocation
SDP Service Discovery Protocol
SOAP Simple Object Access Protocol
UAProf User Agent Profile
UPnP Universal Plug and Play
WSNs Wireless Sensor Networks
XML eXtensible Markup Language

20 V. Raychoudhury et al. / Pervasive and Mobile Computing () –

References

[1] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, E. Jansen, The Gator Tech Smart House: a programmable pervasive space, IEEE Computer 38
(3) (2005) 50–60.

[2] B. Brumitt, B.Meyers, J. Krumm, A. Kern, S. Shafer, Easyliving: technologies for intelligent environments, in: Proc. of the 2nd International Symposium
on Handheld and Ubiquitous Computin, HUC’00, 2000, pp. 12–29.

[3] Y. Shi, W. Xie, G. Xu, R. Shi, E. Chen, Y. Mao, F. Liu, The smart classroom:merging technologies for seamless tele-education, IEEE Pervasive Computing
(PERVASIVE) 2 (2) (2003) 47–55.

[4] A. Chen, R.R. Muntz, S. Yuen, I. Locher, S. Park, M.B. Srivastava, A support infrastructure for the smart kindergarten, IEEE Pervasive Computing
(PERVASIVE) 1 (2) (2002) 49–57.

[5] H. Chen, F. Perich, D. Chakraborty, T. Finin, A. Joshi, Intelligent agentsmeet semantic web in a smartmeeting room, in: Proc. of the Third International
Joint Conference on Autonomous Agents and Multi Agent Systems, AAMAS 2004, July, 2004.

[6] C. Santoro, F. Paternò, G. Ricci, B. Leporini, A multimodal mobile museum guide for all, in: Proc. of the Mobile Interaction with the Real World, MIRW
2007, Workshop at MobileHCI 2007, Singapore, September 11–14, 2007.

[7] M. Bang, A. Larsson, H. Eriksson, NOSTOS: a paper-based ubiquitous computing healthcare environment to support data capture and collaboration,
in: Proc. of the 2003 AMIA Annual Symposium, 2003, pp. 46–50.

[8] M. Rodriguez, V. Gonzalez, P. Santana, J. Favela, A home-based communication system for older adults and their remote family, Computers in Human
Behaviour Journal 25 (2009) 609–618.

[9] C.D. Kidd, R. Orr, G.D. Abowd, C.G. Atkeson, I.A. Essa, B. MacIntyre, E.D. Mynatt, T. Starner, W. Newstetter, The Aware Home: a living laboratory for
ubiquitous computing research, in: Proc. of the Second International Workshop on Cooperative Buildings, CoBuild’99, 1999, pp. 191–198.

[10] D.J. Patterson, O. Etzioni, D. Fox, H. Kautz, Intelligent ubiquitous computing to support Alzheimer’s patients: enabling the cognitively disabled, in:
Proc. of the First International Workshop on Ubiquitous Computing for Cognitive Aids UniCog, 2002.

[11] J. Bohn, The smart jigsaw puzzle assistant: using RFID technology for building augmented real-world games, in: Proc. of the Pervasive Games
Workshop 2004.

[12] M. Kumar, S.K. Das, Pervasive computing: enabling technologies and challenges, in: A. Zomaya (Ed.), Handbook of Nature-Inspired and Innovative
Computing, Section III, Springer, 2006, pp. 613–631.

[13] M. Román, C.K. Hess, R. Cerqueira, A. Ranganathan, R.H. Campbell, K. Nahrstedt, Gaia: a middleware infrastructure to enable active spaces, IEEE
Pervasive Computing (PERVASIVE) (2002) 74–83.

[14] S. Chetan, J. Al-Muhtadi, R.H. Campbell, M.D. Mickunas, Mobile Gaia: a middleware for ad-hoc pervasive computing, in: IEEE Consumer
Communications and Networking Conference, CCNC 2005, Las Vegas, January, 2005.

[15] J.P. Sousa, D. Garlan, Aura: an architectural framework for usermobility in ubiquitous computing environments, in: Proc. of the 3rdWorking IEEE/IFIP
Conference on Software Architecture, WICSA, 2002.

[16] D. Garlan, D.P. Siewiorek, A. Smailagic, P. Steenkiste, Project Aura: toward distraction-free pervasive computing, IEEE Pervasive Computing
(PERVASIVE) 1 (2) (2002).

[17] M. Satyanarayanan, Pervasive computing: vision and challenges, IEEE Personal Communications (2001).
[18] M. Kumar, B. Shirazi, S. Das, B.Y. Sung, D. Levine, M. Singhal, PICO: a middleware framework for pervasive computing, IEEE Pervasive Computing

(PERVASIVE) (2003) 72–79.
[19] S. Kalasapur,M. Kumar, B. Shirazi, Seamless service composition (SeSCo) in pervasive environments, in: Proc. of the First ACM internationalWorkshop

on Multimedia Service Composition, Hilton, Singapore, November 11, 2005. MSC’05, ACM, New York, NY, 2005, pp. 11–20.
[20] S. Kalasapur, M. Kumar, B. Shirazi, Dynamic service composition in pervasive computing systems, IEEE Transactions on Parallel and Distributed

Systems 18 (7) (2007) 907–918.
[21] P. Veríssimo, V. Cahill, A. Casimiro, K. Cheverst, A. Friday, J. Kaiser, CORTEX: towards supporting autonomous and cooperating sentient entities, in:

Proc. European Wireless 2002, Florence, Italy, February, 2002.
[22] R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, T. Anderson, B. Bershad, G. Borriello, S. Gribble, D. Wetherall, System support for pervasive

applications, ACM Transactions on Computer Systems 22 (4) (2004) 421–486.
[23] R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A. MacBeth, S. Swanson, T. Anderson, B. Bershad, G. Borriello, S. Gribble, D.Wetherall, Systems directions

for pervasive computing, in: Proc. of the 8th Workshop on Hot Topics in Operating Systems, HotOS-VIII, May, 2001, pp. 147–151.
[24] S. Kabadayi, C. Julien, A local data abstraction and communication paradigm for pervasive computing, in: Proc. of the of the 5th Annual IEEE

International Conference on Pervasive Computing and Communications, March, 2007, pp. 57–66.
[25] J.P. Sousa, V. Poladian, D. Garlan, B. Schmerl, P. Steenkiste, Steps toward activity-oriented computing, in: Next Generation Software Program

Workshop, 2008.
[26] M.Wang, J. Cao, J. Siebert, V. Raychoudhury, J. Li, Ubiquitous intelligent object:modeling and applications, in: Proc. of the 3rd International Conference

on Semantics, Knowledge and Grid, SKG’07, October 29–31, 2007.
[27] S. Madden, M. Franklin, Fjording the stream: an architecture for queries over streaming sensor data, in: Proc. of the Intl. Conf. on Data Engineering,

ICDE’2002, 2002, pp. 555–566.
[28] T. Strang, C. Linnhoff-Popien, A context modeling survey, in: Workshop on Advanced Context Modelling, Reasoning and Management as Part of

UbiComp 2004.
[29] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-aware systems, International Journal of Ad Hoc and Ubiquitous Computing 2 (4) (2007)

263–277.
[30] H. Truong, S. Dustdar, A survey on context-aware web service systems, International Journal of Web Information Systems 5 (1) (2009) 5–31.
[31] C. Cho, D. Lee, Survey of service discovery architectures for mobile ad hoc networks, Unpublished Term Paper, Mobile Computing, CEN 5531,

Computer and Information Sciences and Engineering Department, University of Florida Gainesville, USA, 2005.
[32] A.N. Mian, R. Baldoni, R. Beraldi, A survey of service discovery protocols inmultihopmobile ad hoc networks, IEEE Pervasive Computing (PERVASIVE)

8 (1) (2009) 66–74.
[33] F. Zhu, M.W. Mutka, L.M. Ni, Service discovery in pervasive computing environments, IEEE Pervasive Computing (PERVASIVE) 4 (4) (2005) 81–90.
[34] C. Mascolo, L. Capra, W. Emmerich, Mobile computing middleware, in: Advanced Lectures on Networking, in: Enrico Gregori, Giuseppe Anastasi,

Stefano Basagni (Eds.), Lecture Notes in Computer Science, vol. 2497, Springer-Verlag New York, Inc., New York, NY, USA, 2002, pp. 20–58.
[35] G. Schiele, M. Handte, C. Becker, Pervasive computing middleware, Springer US Handbook of Ambient Intelligence and Smart Environments, Boston,

MA, 2010.
[36] M.M. Wang, J. Cao, J. Li, S.K. Das, Middleware for wireless sensor networks: a survey, Journal of Computer Science and Technology 23 (3) (2008)

305–326.
[37] H.B. Christensen, J.E. Bardram, Supporting human activities—exploring activity-centered computing, in: Proceedings of Ubicomp 2002, Springer

Verlag, 2002, pp. 107–116.
[38] J.E. Bardram, Activity-based computing: support formobility and collaboration in ubiquitous computing, Personal and Ubiquitous Computing (2005)

312–322.
[39] J.E. Bardram, C. Bossen, Mobility work—the spatial dimension of collaboration at a hospital, Computer Supported Cooperative Work 14 (2) (2005)

131–160.
[40] J. Bardram, J. Bunde-Pedersen, M. Soegaard, Support for activity-based computing in a personal computing operating system, in: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI 2006, ACM Press, New York, New York, USA, 2006.

V. Raychoudhury et al. / Pervasive and Mobile Computing () – 21

[41] W.W. Chu, V. Cerf, T.C. Chen, R.S. Gains, B. Lampson, Some considerations for a high performancemessage-based interprocess communication system,
in: Proceedings of the ACM SIGCOMM/SIGOPS Workshop on Interprocess Communications, 1975.

[42] D. Gelernter, Generative communication in Linda, ACM Transactions on Programming Languages and Systems (TOPLAS) 7 (1) (1985) 80–112.
[43] F. Fabret, H.A. Jacobsen, F. Llirbat, J. Pereira, K.A. Ross, D. Shasha, Filtering algorithms and implementation for very fast publish/subscribe systems,

in: Proceedings of ACM SIGMOD, vol. 30, 2001, pp. 115–126.
[44] K.P. Birman, T.A. Joseph, Exploiting virtual synchrony in distributed systems, Operating Systems Review (1987) 123–138.
[45] http://www.omg.org/spec/CORBA/.
[46] http://www.w3.org/TR/soap12-part1/.
[47] http://java.sun.com/developer/onlineTraining/rmi/RMI.html.
[48] A.K. Dey, Understanding and using context, Personal and Ubiquitous Computing 5 (1) (2001) 4–7.
[49] D. Zhang,M. Guo, L. Liu,M. Zhong, X. Liu, K. Ota, X. Zhu, A referencemodel for context-awareness in pervasive computing environments, in: Pervasive

Computing, Nova Publisher, 2011 (Book Chapter).
[50] S.Madden,M. Franklin, J. Hellerstein,W. Hong, TinyDB: an acquisitional query processing system for sensor networks, ACMTransactions onDatabase

Systems 30 (1) (2005) 122–173.
[51] S. Li, Y. Lin, S. Son, J. Stankovic, Y. Wei, Event detection services using data service middleware in distributed sensor networks, Telecommunication

Systems 26 (2) (2004) 351–368.
[52] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, J. Kelner, Mires: a publish/subscribe middleware for sensor networks, Personal

and Ubiquitous Computing 10 (1) (2005) 37–44.
[53] T. Liu, M. Martonosi, Impala: a middleware system for managing autonomic, parallel sensor systems, in: Proc. of the 9th ACM SIGPLAN symposium

on Principles and Practice of Parallel Programming, PPoPP’2003, 2003, pp. 107–118.
[54] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, Tag: a tiny aggregation service for ad-hoc sensor networks, in: Proc. of the 5th Symposium on

Operating Systems Design and Implementation, OSDI’2002, pp. 131–146.
[55] P. Bonnet, J.E. Gehrke, P. Seshadri, Towards sensor database systems, in: Proc. of the Second International Conference on Mobile Data Management,

MDM’01, Hong Kong, January, 2001.
[56] A. Boulis, C. Han, M. Srivastava, Design and implementation of a framework for efficient and programmable sensor networks, in: Proc. of the 1st Intl.

Conf. on Mobile Systems, Applications and Services, MobiSys’2003, 2003, pp. 187–200.
[57] S. Madden, M. Shah, J. Hellerstein, V. Raman, Continuously adaptive continuous queries over streams, in: SIGMOD’2002: Proc. of the 2002 ACM

SIGMOD Int. Conf. on Management of Data, 2002, pp. 49–60.
[58] R. Rajagopalan, P.K. Varshney, Data aggregation techniques in sensor networks: a survey, IEEE Communications Surveys and Tutorials 8 (4) (2006)

48–63.
[59] M. Wang, J. Cao, Jing Li, S.K. Das, Middleware for wireless sensor networks: a survey, Journal of Computer Science and Technology 23 (3) (2008)

305–326.
[60] A. Ranganathan, J. Al-Muhtadi, R.H. Campbell, Reasoning about uncertain contexts in pervasive computing environments, IEEE Pervasive Computing

(PERVASIVE) 3 (2) (2004) 62–70.
[61] M. Mamei, R. Nagpal, Macro programming through Bayesian networks: distributed inference and anomaly detection, in: Proc. of the 5th Annual IEEE

Int. Conf. on Pervasive Computing and Communications, Percom’2007, March, 2007, pp. 87–96.
[62] A. Ranganathan, R.H. Campbell, An infrastructure for context awareness based on first order logic, Personal and Ubiquitous Computing 7 (6) (2003)

353–364.
[63] Stanford Center for Biomedical Informatics Research, Protégé. http://protege.stanford.edu/.
[64] IBM China Research Lab, Integrated ontology development toolkit. http://www.alphaworks.ibm.com/tech/semanticstk, December 2007.
[65] A.P. Dempster, A generalization of Bayesian inference, Journal of the Royal Statistical Society, Series B 30 (1968) 205–247.
[66] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, 1976.
[67] F. Perich, A. Joshi, T. Finin, Y. Yesha, On data management in pervasive computing environments, The IEEE Transactions on Knowledge and Data

Engineering 16 (5) (2004) 621–634.
[68] I. Roussaki, M. Strimpakou, C. Pils, N. Kalatzis, N. Liampotis, Optimising context data dissemination and storage in distributed pervasive computing

systems, Pervasive and Mobile Computing 6 (2) (2010) 218–238.
[69] J. Ma, Spacelog concept and issues for novel u-services in smart spaces, in: Keynote Speech, Int’l Conference on Future Generation Communication

and Networking, FGCN’08, December, 2008.
[70] T. Gu, H.K. Pung, D. Zhang, A P2P context lookup service for multiple smart spaces, in: Proc. of the 4th International Conference on Mobile Systems,

Applications, and Services, Mobisys’06, Uppsala, Sweden, June, 2006.
[71] Bill Schilit, Norman Adams, Roy Want, Context-aware computing applications, in: Proceedings of the Workshop on Mobile Computing Systems and

Applications, 1994.
[72] M. Samulowitz, F. Michahelles, C. Linnhoff-Popien, Capeus: an architecture for context-aware selection and execution of services, in: K. Zielinski,

K. Geihs, A. Laurentowski (Eds.), New Developments in Distributed Applications and Interoperable Systems, 2001, pp. 23–40.
[73] C. Ghidini, F. Giunchiglia, Local models semantics, or contextual reasoning = locality + compatibility, Artificial Intelligence 127 (2) (2001) 221–259.
[74] J. McCarthy, Notes on formalizing context, in: Proc. of the 13th Int. Joint Conf. on Artificial Intelligence, vol. 13, 1993, pp. 555–560.
[75] J. McCarthy, S. Buvac, Formalizing context (expanded notes), Computing Natural Language 81 (1998) 13–50.
[76] P. Gray, D. Salber, Modelling and using sensed context information in the design of interactive applications, in: Proc. of 8th IFIP Intl. Conf. on

Engineering for Human–Computer Interaction, 2001, pp. 317–336.
[77] X. Chang, S.C. Cheung,W.K. Chan, Y. Chunyang, Heuristics-based strategies for resolving context inconsistencies in pervasive computing applications,

in: Proc. of the 28th Intl. Conf. on Distributed Computing Systems, ICDCS’2008, 2008, pp. 713–721.
[78] C. Xu, S.C. Cheung, W.K. Chan, Incremental consistency checking for pervasive context, in: ICSE’2006, Proc. of the 28th Int. Conf. on Software

Engineering, 2006, pp. 292–301.
[79] C. Xu, S.C. Cheung, Inconsistency detection and resolution for context-aware middleware support, in: Proc. of the 10th European Software

Engineering Conf. Held Jointly with 13th ACM SIGSOFT Int. Symposium on Foundations of Software Engineering, 2005, pp. 336–345.
[80] A. Schmidt, K.A. Adoo, A. Takaluoma, U. Tuomela, K.V. Laerhoven, W.V.D. Velde, Advanced interaction in context, in: Proc. of 1st Int. Symposium on

Handheld and Ubiquitous Computing, 1999, pp. 89–101.
[81] A. Schmidt, K. Van Laerhoven, How to build smart appliances? IEEE Personal Communications 8 (4) (2001) 66–71.
[82] K. Cheverst, K. Mitchell, N. Davies, Design of an object model for a context sensitive tourist guide, Computers and Graphics 23 (6) (1999) 883–891.
[83] World Wide Web Consortium (W3C), User agent profile (uaprof). http://www1.wapforum.org/tech/terms.asp?doc=WAP-248-UAProf-20011020-

a.pdf, 2001.
[84] World Wide Web Consortium (W3C), Composite capability/preference profiles (CC/PP): structure and vocabularies 2.0—W3C working draft.

http://www.w3.org/TR/2007/WD-CCPP-struct-vocab2-20070430/, 2007.
[85] J. Indulska, R. Robinson, A. Rakotonirainy, K. Henricksen, Experiences in using CC/PP in context-aware systems, in: Proc. of the 4th Int. Conf. onMobile

Data Management, MDM’2003, 2003, pp. 247–261.
[86] K. Henricksen, J. Indulska, A. Rakotonirainy, Modeling context information in pervasive computing systems, in: Proc. of the 1st Int. Conf. on Pervasive

Computing, Pervasive’2002, 2002, pp. 167–180.
[87] E. Chtcherbina, M. Franz, Peer-to-peer coordination framework (P2Pc): enabler of mobile ad-hoc networking for medicine, business, and

entertainment, in: Proc. of Intl. Conf. on Advances in Infrastructure for Electronic Business, Education, Science, Medicine, and Mobile Technologies
on the Internet, 2003, pp. 22–29.

http://www.omg.org/spec/CORBA/
http://www.w3.org/TR/soap12-part1/
http://java.sun.com/developer/onlineTraining/rmi/RMI.html
http://protege.stanford.edu/
http://www.alphaworks.ibm.com/tech/semanticstk
http://www1.wapforum.org/tech/terms.asp?doc%3DWAP-248-UAProf-20011020-a.pdf
http://www1.wapforum.org/tech/terms.asp?doc%3DWAP-248-UAProf-20011020-a.pdf
http://www1.wapforum.org/tech/terms.asp?doc%3DWAP-248-UAProf-20011020-a.pdf
http://www.w3.org/TR/2007/WD-CCPP-struct-vocab2-20070430/

22 V. Raychoudhury et al. / Pervasive and Mobile Computing () –

[88] N. Ryan, ConteXtML: exchanging contexual information between a mobile client and the fieldnote server, Technical Document, Computing
Laboratory, University of Kent at Canterbury, 1999. http://www.cs.kent.ac.uk/projects/mobicomp/fnc/ConteXtML.html.

[89] L. Kagal, V. Korolev, H. Chen, A. Joshi, T. Finin, Project Centaurus: a framework for indoor services mobile services, in: Proc. of the 21st Intl. Conf. on
Distributed Computing Systems Workshops, ICDCSW’2001, 2001, pp. 195–201.

[90] P. Brown, J. Bovey, X. Chen, Context-aware applications: from the laboratory to the marketplace, IEEE Personal Communications 4 (1997) 58–64.
[91] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan, D. Riboni, A survey of context modeling and reasoning techniques,

Pervasive and Mobile Computing 6 (2) (2010).
[92] X.H. Wang, D.Q. Zhang, T. Gu, H.K. Pung, Ontology based context modeling and reasoning using OWL, in: Proc. of the 2nd IEEE Annual Conf. on

Pervasive Computing and Communications Workshops, PercomW’2004, 2004, pp. 18–22.
[93] I. Pandis, J. Soldatos, A. Paar, J. Reuter, M. Carras, L. Polymenakos, An ontology-based framework for dynamic resource management in ubiquitous

computing environments, in Proc. of the 2nd Intl. Conf. on Embedded Software and Systems, 2005, pp. 195–203.
[94] N.B. Behlouli, C. Taconet, G. Bernard, An architecture for supporting development and execution of context-aware component applications, in: Proc.

of the ACS/IEEE Int. Conf. on Pervasive Services, ICPS’2006, 2006, pp. 57–66.
[95] D. Ejigu, M. Scuturici, L. Brunie, An ontology-based approach to context modeling and reasoning in pervasive computing, in: Proc. of the 5th IEEE

Annual Conf. on Pervasive Computing and Communications Workshops, PercomW’2007, 2007, pp. 14–19.
[96] M. Siadaty, C. Torniai, D. Gasevic, J. Jovanovic, T. Eap, M. Hatala, m-LOCO: an ontology-based framework for context-aware mobile learning, in: Proc.

of the 6th Int. Workshop on Ontologies and Semantic Web for Intelligent Educational Systems at the 9th Int. Conf. on Intelligent Tutoring Systems,
2008, pp. 21–35.

[97] L. Seremeti, C. Goumopoulos, A. Kameas, Ontology-based modeling of dynamic ubiquitous computing applications as evolving activity spheres,
Pervasive and Mobile Computing 5 (5) (2009) 574–591.

[98] B. Hu, B. Hu, J. Wan, M. Dennis, H.-H. Chen, L. Li, Q. Zhou, Ontology-based ubiquitous monitoring and treatment against depression, Wireless
Communications and Mobile Computing 10 (10) (2010) 1303–1319.

[99] M. Rosemann, P. Green,M. Indulska, A referencemethodology for conducting ontological analyses, in: ER’2004, Proc. of 23rd Intl. Conf. on Conceptual
Modeling, 2004, pp. 110–121.

[100] D. Zhang,M. Guo, J. Zhou, D. Kang, J. Cao, Context reasoning using extended evidence theory in pervasive computing environments, FutureGeneration
Computer Systems 26 (2) (2010) 207–216.

[101] D. Zhang, J. Cao, J. Zhou, M. Guo, Extended Dempster–Shafer theory in context reasoning for ubiquitous computing environments, in: IEEE Int. Conf.
on Computational Science and Engineering, vol. 2, 2009, pp. 205–212.

[102] A. Kofod Petersen, M. Mikalsen, Context: representation and reasoning: representing and reasoning about context in a mobile environment, Revue
D’Intelligence Artificielle 19 (3) (2005) 479–498.

[103] J. Nieto, M. Gutierrez, B. Lancho, Developing home care intelligent environments: from theory to practice, in: Proceedings fo the 7th Int. Conf. on
Practical Applications of Agents and Multi-Agent Systems, 2009, pp. 2–12.

[104] X. Wang, D. Zhang, T. Gu, H. Pung, Ontology based context modeling and reasoning using OWL, in: Proc. of the 2nd IEEE Annual Conf. on Pervasive
Computing and Communications Workshops 2004, 2004, pp. 18–22.

[105] A. Bikakis, T. Patkos, G. Antoniou, D. Plexousakis, A survey of semantics-based approaches for context reasoning in ambient intelligence, in: Proc. of
the Workshop Artificial Intelligence Methods for Ambient Intelligence, Springer, 2007, pp. 15–24.

[106] P. Delir Haghighi, S. Krishnaswamy, A. Zaslavsky, M.M. Gaber, Reasoning about context in uncertain pervasive computing environments, in:
EuroSSC’2008, Proc. of the 3rd European Conf. on Smart Sensing and Context, 2008, pp. 112–125.

[107] C.B. Anagnostopoulos, P. Pasias, S. Hadjiefthymiades, A framework for imprecise context reasoning, in: Proc. of IEEE Int. Conf. on Pervasive Services,
ICPS’07, Istanbul, Turkey, July, 2007, pp. 181–184.

[108] A.A. Eldin, J. van den Berg, R. Wagenaar, A fuzzy reasoning scheme for context sharing decision making, in: ICEC’2004, Proc. of the 6th Int. Conf. on
Electronic Commerce, 2004, pp. 371–375.

[109] T.D. Hodes, Steven E. Czerwinski, Ben Y. Zhao, AnthonyD. Joseph, RandyH. Katz, An architecture for securewide-area service discovery, ACMWireless
Networks Journal 8 (2–3) (2002) 213–230.

[110] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, J. Lilley, The design and implementation of an intentional naming system, in: Proc. of Seventeenth
ACM Symposium on Operating Systems Principles, SOSP’99, ACM Press, Charleston, SC, 1999, pp. 186–201.

[111] The Salutation Consortium, Salutation architecture specification version 2.0c. Available online at: http://www.salutation.org/, June, 1999.
[112] Jini Technology core platform specification, v. 2.0, Sun Microsystems. www.sun.com/software/jini/specs/core2_0.pdf, June 2003.
[113] S. Cheshire,M. Krochmal, DNS-based service discovery, IETF InternetDraft. http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt, September 2008.
[114] E. Guttman, C. Perkins, Service location protocol, version 2, June 1999.
[115] UPnP device architecture 1.0, UPnP Forum. www.upnp.org/resources/documents/CleanUPnPDA10120031202s.pdf, December, 2003.
[116] V. Sundramoorthy, J. Scholten, P.G. Jansen, P.H. Hartel, Service discovery at home, in: Proceedings of Fourth International Conference on Information,

Communications and Signal Processing and Fourth IEEE Pacific—Rim Conference onMultimedia, ICICS/PCM, IEEE Computer Society Press, Singapore,
2003, pp. 1929–1933.

[117] C. Lee, S. Helal, Amulti-tier ubiquitous service discovery protocol for mobile clients, in: Proceedings of the International Symposium on Performance
Evaluation of Computer and Telecommunication Systems, SPECTS’03, Montréal, Canada, 2003.

[118] M. Balazinska, H. Balakrishnan, D. Karger, INS/Twine: a scalable peer-to-peer architecture for intentional resource discovery, in: Proceedings of
International Conference on Pervasive Computing 2002, August, 2002.

[119] K. Arabshian, H. Schulzrinne, GloServ: global service discovery architecture, in: Proceedings of MobiQuitous, June 2004, pp. 319–325.
[120] R. Robinson, J. Indulska, Superstring: a scalable service discovery protocol for the wide area pervasive environment, in: Proceedings of the Eleventh

IEEE International Conference on Networks, Sydney, September 2003.
[121] E. Kang, M.J. Kim, E. Lee, U. Kim, DHT-basedmobile service discovery protocol formobile ad hoc networks, in: Proceedings of the Fourth International

Conference on Intelligent Computing: Advanced Intelligent Computing Theories and Applications—with Aspects of Theoretical and Methodological
Issues, ICIC’08, September, 2008.

[122] H.J. Yoon, E.J. Lee, H. Jeong, J.S. Kim, Proximity-based overlay routing for service discovery in mobile ad hoc networks, in: Proceedings of Nineteenth
International Symposium on Computer and Information Sciences, ISCIS, 2004.

[123] H. Pucha, S. Das, Y. Hu, Ekta: an efficient DHT substrate for distributed applications inmobile ad hoc networks, in: Proceedings of Sixth IEEEWorkshop
on Mobile Computing Systems and Applications, WMCSA, 2004.

[124] F. Delmastro, From pastry to CrossROAD: CROSS-layer ring overlay for ad hoc networks, in: Proceedings of the 3rd IEEE International Conference on
Pervasive Computing and Communication Workshops, March, 2005, pp. 60–64.

[125] M. Caesar, M. Castro, et al. Virtual ring routing: network routing inspired by DHTs, in: Proceedings of ACM SIGCOMM, 2006, pp. 351–362.
[126] Bluetooth SIG. Specification. http://bluetooth.com/.
[127] M. Nidd, Service discovery in DEAPspace, IEEE Personal Communications (2001) 39–45.
[128] O.V. Ratsimor, D. Chakraborty, A. Joshi, T. Finin, Allia: alliance-based service discovery for ad hoc environments, in: Proceedings of ACM Workshop

on Mobile Commerce, WMC’02, September, 2002.
[129] D. Chakraborty, A. Joshi, T. Finin, Y. Yesha, GSD: a novel group-based service discovery protocol forMANETs, in: Proceedings of Fourth IEEE Conference

on Mobile and Wireless Communications Networks, MWCN, September, 2002.
[130] D. Chakraborty, A. Joshi, Y. Yesha, T. Finin, Toward distributed service discovery in pervasive computing environments, IEEE Transactions on Mobile

Computing (2006).

http://www.cs.kent.ac.uk/projects/mobicomp/fnc/ConteXtML.html
http://www.salutation.org/
http://www.sun.com/software/jini/specs/core2_0.pdf
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt
http://www.upnp.org/resources/documents/CleanUPnPDA10120031202s.pdf
http://bluetooth.com/

V. Raychoudhury et al. / Pervasive and Mobile Computing () – 23

[131] S. Helal, N. Desai, V. Verma, C. Lee, Konark—a service discovery and delivery protocol for ad hoc networks, in: Proceedings of the Third IEEE Conference
on Wireless Communication Networks WCNC, March, 2003.

[132] T. Zahn, J. Schiller, MADPastry: a DHT substrate for practicably sized MANETs, in: Proceedings of Fifth Workshop on Applications and Services in
Wireless Networks, ASWN, June, 2005.

[133] A. Rowstron, P. Druschel, Pastry: scalable, decentralized object location, and routing for large-scale peer-to-peer systems, in: Proceedings of IFIP/ACM
International Conference on Distributed Systems Platforms, Middleware, in: Lecture Notes in Computer Science (LNCS), vol. 2218, Heidelberg,
Germany, November, 2001, pp. 329–350.

[134] D. Johnson, D. Maltz, J. Broch, DSR: The Dynamic Source Routing Protocol for Multihop Wireless Ad Hoc Networks, Addison-Wesley, 2001,
pp. 139–172 (Chapter 5).

[135] C.E. Perkins, E.M. Royer, Ad-hoc on-demand distance vector routing, in: Proceedings of Second IEEE Workshop on Mobile Computer Systems and
Applications, IEEE Computer Society, 1999, pp. 90–100.

[136] T. Clausen, P. Jacquet, Optimized link state routing protocol (OLSR), RFC 3626, October, 2003.
[137] M. Klein, B. Konig-Ries, P. Obreiter, Service rings—a semantic overlay for service discovery in ad hoc networks, in: DEXA Workshops, 2003,

pp. 180–185.
[138] M. Klein, B. Konig-Ries, P. Obreiter, Lanes—a lightweight overlay for service discovery inmobile ad hoc networks, Technical Report 2003-6, University

of Karlsruhe, May 2003.
[139] U.C. Kozat, L. Tassiulas, Service discovery in mobile ad hoc networks: an overall perspective on architectural choices and network layer support

issues, Ad Hoc Networks 2 (1) (2004) 23–44.
[140] F. Zhu, M. Mutka, L. Ni, Splendor: a secure, private and location-aware service discovery protocol supporting mobile services, in: Proceedings of the

First International Conference on Pervasive Computing and Communication PerCom’03, 2003, pp. 235–242.
[141] J. Tyan, Q.H. Mahmoud, A comprehensive service discovery solution for mobile ad hoc networks, ACM/Kluwer Journal of Mobile Networks and

Applications (MONET) 10 (8) (2005) 423–434.
[142] F. Sailhan, V. Issarny, Scalable service discovery for MANET, in: Proc. of IEEE PerCom’05, 2005, pp. 235–246.
[143] M.J. Kim,M. Kumar, B.A. Shirazi, Service discovery using volunteer nodes in heterogeneous pervasive computing environments, Pervasive andMobile

Computing 2 (2006) 313–343.
[144] J. Robinson, I.Wakeman, T. Owen, Scooby:middleware for service composition in pervasive computing, in: Proc. of the 2ndWorkshop onMiddleware

For Pervasive and Ad-Hoc Computing (Toronto, Ontario, Canada, October 18–22, 2004) MPAC’04, Vol. 77, ACM, New York, NY, 2004, pp. 161–166.
[145] M. Vallee, F. Ramparany, L. Vercouter, Flexible composition of smart device services, in: Proc. of the International Conference on Pervasive Systems

and Computing, PSC-05, Las Vegas, USA, June 2005, pp. 27–30.
[146] M.W. Newman, J.Z. Sedivy, C.M. Neuwirth, W.K. Edwards, J.I. Hong, S. Izadi, K. Marcelo, T.F. Smith, Designing for serendipity: supporting end-user

configuration of ubiquitous computing environments, in: Proc. of the 4thConference onDesigning interactive Systems: Processes, Practices,Methods,
and Techniques, London, England, June 25–28, 2002. DIS’02, ACM, 2002, pp. 147–156.

[147] A. Bottaro, A. Gérodolle, P. Lalanda, Pervasive service composition in the home network, in: Proc. of the 21st International Conference on Advanced
Networking and Applications, AINA’07, IEEE Computer Society, Washington, DC, pp. 596–603.

[148] S.B. Mokhtar, D. Fournier, N. Georgantas, V. Issarny, Context-aware service composition in pervasive computing environments, in: Proc. of the Rapid
Integration of Software Engineering Techniques, RISE’05, in: LNCS, vol. 3943, Springer, Berlin, Germany, 2006, pp. 129–144.

[149] S.B. Mokhtar, J. Liu, N. Georgantas, V. Issarny, QoS-aware dynamic service composition in ambient intelligence environments, in: Proc. of the 20th
IEEE/ACM international Conference on Automated Software Engineering, ASE’05, pp. 317–320.

[150] D. Chakrabory, A. Joshi, T. Finin, Y. Yesha, Service composition for mobile environments, Mobile Networks and Applications 10 (4) (2005) 435–451.
[151] J. Siebert, J.N. Cao, L. Cheng, E.Wei, C. Chen, J. Ma, Decentralized service composition in pervasive computing environments, in: InternationalWireless

Communications and Mobile Computing Conference, IWCMC 2010.
[152] C. Xu, S.C. Cheung, Inconsistency detection and resolution for context-aware middleware support, in: SIGSOFT ESEC/FSE-13, Proc. of the 10th

European Software Engineering Conference, 2005, pp. 336–345.
[153] S. Jeffery, M. Garofalakis, M. Franklin, Adaptive cleaning for RFID data streams, in: Proc. of the 32nd Int. Conf. on Very Large Data Bases, 2006,

pp. 163–174.
[154] C. Floerkemeier, M. Lampe, Issues with RFID usage in ubiquitous computing applications, in: Proc. of the 2nd Int. Conf. on Pervasive Computing,

2004, pp. 188–193.
[155] E. Elnahrawy, B. Nath, Cleaning and querying noisy sensors, in: WSNA’2002, Proc. of the 2nd ACM Int. Conf. on Wireless Sensor Networks and

Applications, 2003, pp. 78–87.
[156] P. Bonnet, J. Gehrke, P. Seshadri, Querying the physical world, IEEE Personal Communications 7 (5) (2000) 10–15.
[157] S. Jeffery, G. Alonso, M. Franklin, W. Hong, J. Widom, Declarative support for sensor data cleaning, in: Lecture Notes in Computer Science, 2006,

pp. 83–100.
[158] Z. Yongzhen, C. Lei, X.S. Wang, L. Jie, A weighted moving average-based approach for cleaning sensor data, in: ICDCS’2007, Proc. of the 27th Int. Conf.

on Distributed Computing Systems, 2007, pp. 38–48.
[159] R. Reichle, M. Wagner, M. Khan, K. Geihs, M. Valla, C. Fra, N. Paspallis, G. Papadopoulos, A context query language for pervasive computing

environments, in: Percom’2008, Proc. of the 6th IEEE Int. Conf. on Pervasive Computing and Communications, 2008, pp. 434–440.
[160] S.-H. Eo, W. Zha, B.-S. You, D.-W. Lee, H.-Y. Bae, Intelligent Context-Awareness System Using Improved Self-Adaptive Back Propagation Algorithm,

Vol. 4761, Springer, Berlin, Heidelberg, 2007, pp. 329–338 (Chapter 9).
[161] B. Marie-Luce, Handling uncertainty in multimodal pervasive computing applications, Computer Communications 31 (18) (2008) 4234–4241.

1465801.
[162] Y. Bu, S. Chen, J. Li, X. Tao, J. Lu, Context consistency management using ontology based model, in: Int. Conf. on Extending Database Technology,

2006, pp. 741–755.
[163] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, J. Lu, Managing quality of context in pervasive computing, in: QSIC’06, Proc. of the 6th Int. Conf. on Quality Software,

2006, pp. 193–200.
[164] A. Bikakis, G. Antoniou, Local and distributed defeasible reasoning in multi-context systems, in: RuleML’08: Proc. of the Int. RuleML Symposium on

Rule Interchange and Applications, Springer, 2008, pp. 135–149.
[165] A. Ranganathan, R. Campbell, A. Ravi, A. Mahajan, Conchat: a context-aware chat program, IEEE Pervasive Computing (PERVASIVE) 1 (3) (2002)

51–57.
[166] A. Bikakis, F. Antoniou, Distributed reasoning with conflicts in a multi-context framework, in: D. Fox and C. P. Gomes (Eds.), AAAI’08: Proc. of the

23rd AAAI Conf. on Artificial Intelligence, 2008, pp. 1778–1779.
[167] I. Park, D. Lee, S. Hyun, A dynamic context-conflict management scheme for group-aware ubiquitous computing environments, in: COMPSAC’05:

Proc. of the 29th Annual Int. Computer Software and Applications Conference, vol. 1, 2005.
[168] Y. Huang, X. Ma, J. Cao, X. Tao, J. Lu, Concurrent event detection for asynchronous consistency checking of pervasive context, in: Percom’2009: Proc.

of the 5th IEEE Int. Conf. on Pervasive Computing and Communications, 2007, pp. 37–46.
[169] A. Ranganathan, R. Campbell, A. Ravi, A. Mahajan, Conchat: a context-aware chat program, IEEE Pervasive Computing (PERVASIVE) 1 (3) (2002)

51–57.
[170] J. Chomicki, J. Lobo, S. Naqvi, Conflict resolution using logic programming, IEEE Transactions on Knowledge and Data Engineering 5 (1) (2003)

244–249.
[171] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, J. Lv, Managing quality of context in pervasive computing, in: Proc. the 6th International Conference on Quality

Software, Beijing, China, October, 2006, pp. 193–200.

24 V. Raychoudhury et al. / Pervasive and Mobile Computing () –

[172] A. Manzoor, H. Truong, S. Dustdar, Using quality of context to resolve conflicts in context-aware systems, in: Lecture Notes in Computer Science,
vol. 5786, Springer, Berlin, Heidelberg, 2009, pp. 144–155 (Chapter 4).

[173] A.R. Beresford, F. Stajano, Location privacy in pervasive computing, IEEE Pervasive Computing (PERVASIVE) 2 (1) (2003) 46–55.
[174] V. Raychoudhury, J. Cao, W. Wu, Y. Lai, K -directory community: reliable service discovery in MANET, Journal of Pervasive and Mobile Computing

(JPMC) 7 (1) (2011).
[175] V. Raychoudhury, J. Cao, W. Wu, Top K -leader election in wireless ad hoc networks, in: Proc. of the 17th International Conference on Computer

Communication Networks, ICCCN08, St. Thomas, US, Virgin Islands, August 4–7, 2008.
[176] K. Carey, D. Lewis, S. Higel, V. Wade, Adaptive composite service plans for ubiquitous computing, in: Proc. of the 2nd International Workshop on

Managing Ubiquitous Communications and Services, MUCS, December 2004.
[177] W.L.C. Lee, S. Ko, S. Lee, A. Helal, Context-aware service composition for mobile network environments, in: Proc. of the 4th International Conference

on Ubiquitous Intelligence and Computing, UIC2007, 2007.
[178] U. Bellur, N.C. Narendra, Towards service orientation in pervasive computing systems, in: Proc. of the International Conference on Information

Technology: Coding and Computing, ITCC, 2005, pp. 289–295.
[179] A. Ranganathan, R.H. Campbell, Autonomic pervasive computing based on planning, in: Proc. of the International Conference on Autonomic

Computing, 2004, pp. 80–87.
[180] S. Czerwinski, B.Y. Zhao, T. Hodes, A. Joseph, R. Katz, An architecture for a secure service discovery service, in: Proc. MobiCom, 1999.
[181] Bluetooth Security, White Paper, Bluetooth SIG Security Expert Group.

http://grouper.ieee.org/groups/1451/5/Comparison%20of%20PHY/Bluetooth_24Security_Paper.pdf, 2002.
[182] C. Ellison, UPnP security ceremonies V1.0, Intel Co. October 2003.

http://www.upnp.org/download/standardizeddcps/UPnPSecurityCeremonies_1_0secure.pdf.
[183] F. Zhu, M. Mutka, L. Ni, Prudent exposure: a private and user-centric service discovery protocol, in: Proc. of the IEEE Conference on Pervasive

Computing and Communications, Percom’04, March, 2004.
[184] F. Zhu,W. Zhu, M. Mutka, L. Ni, Expose or not? a progressive exposure approach for service discovery in pervasive computing environments, in: Proc.

of the IEEE Conference on Pervasive Computing and Communications, Percom’05, March, 2005.
[185] F. Zhu, M. Mutka, L. Ni, A private, secure and user-centric information exposure model for service discovery protocols, IEEE Transactions on Mobile

Computing 5 (4) (2006) 418–429.
[186] F. Zhu, W. Zhu, M. Mutka, L. Ni, Private and secure service discovery via progressive and probabilistic exposure, IEEE Transactions on Parallel and

Distributed Systems 18 (11) (2007) 1565–1577.
[187] B. Bloom, Space/time trade-offs in hash coding with allowable errors, Communications of the ACM 13 (1970) 422–426.
[188] A. Schmidt, S. Spiekermann, A. Gershman, F. Michahelles, Real-world challenges of pervasive computing, IEEE Pervasive Computing (PERVASIVE) 5

(3) (2006) 91–93.
[189] M. Conti, S.K. Das, C. Bisdikian,M. Kumar, L.M. Ni, A. Passarella, G. Roussos, G. Tröster, G. Tsudik, F. Zambonelli, Looking ahead in pervasive computing:

challenges and opportunities in the era of cyber—physical convergence, Pervasive and Mobile Computing 8 (1) (2012) 2–21.
[190] B.H.C. Cheng, et al., Software engineering for self-adaptive systems: a research roadmap, in: Self-Adaptive Software, in: LNCS, vol. 5525, Springer-

Verlag, 2009, pp. 1–16.
[191] O. Riva, T. Nadeem, C. Borcea, L. Iftode, Context-aware migratory services in ad hoc networks, IEEE Transactions on Mobile Computing 6 (12) (2007)

1313–1328.
[192] V. Raychoudhury, J. Cao, W. Wu, C. Hui, Service handoff for reliable and continuous service access in pervasive computing, in: Proceedings of 19th

Euromicro International Conference on Parallel, Distributed and Network-Based Computing, PDP, Ayia Napa, Cyprus, February 9–11, 2011.
[193] S. Dobson, S. Denazis, A. Fernández, D. Gaiti, E. Gelenbe, F. Massacci, P. Nixon, F. Saffre, N. Schmidt, F. Zambonelli, A survey of autonomic

communications, ACM Transactions on Autonomous and Adaptive Systems 1 (2) (2006) 223–259.
[194] D. Quercia, N. Lathia, F. Calabrese, G. Di Lorenzo, J. Crowcroft, Recommending social events from mobile phone location data, in: 10th IEEE

International Conference on Data Mining, ICDM 10, Sydney, Australia 2010.
[195] V. Kostakos, E. O’Neill, A. Penn, G. Roussos, D. Papadogkonas, Brief encounters: sensing, modeling and visualizing urban mobility and copresence

networks, ACM Transactions on Computer and Human Interaction 17 (1) (2010).
[196] F. Calabrese, J. Reades, C. Ratti, Eigenplaces: segmenting space through digital signatures, IEEE Pervasive Computing (PERVASIVE) 9 (2010) 78–84.

http://grouper.ieee.org/groups/1451/5/Comparison%20of%20PHY/Bluetooth_24Security_Paper.pdf
http://www.upnp.org/download/standardizeddcps/UPnPSecurityCeremonies_1_0secure.pdf

	Middleware for pervasive computing: A survey
	Introduction
	Reference model for PvC middleware
	Model overview
	Programming abstractions
	System services and run-time supports
	System architecture
	Reliability and security supports

	Pervasive computing middleware services
	Context management service
	Context acquisition
	Contextual data storage
	Context modeling
	Context reasoning

	Service management service
	Service discovery
	Service composition

	Reliability and security support
	Fault tolerance in context management
	Security and privacy in context management
	Fault tolerance in service management
	Security and privacy in service management

	Challenging open issues
	General PvC research issues
	Context management issues
	Service management issues
	Social network-related issues

	Conclusion
	References

