ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Expert Systems with Applications 36 (2009) 455-463

Expert Systems
with Applications

www.elsevier.com/locate/eswa

Modelling situation awareness for Context-aware Decision Support

Yu-Hong Feng, Teck-Hou Teng, Ah-Hwee Tan *

Intelligent Systems Centre and School of Computer Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore

Abstract

Situation awareness modelling is popularly used in the command and control domain for situation assessment and decision support.
However, situation models in real-world applications are typically complex and not easy to use. This paper presents a Context-aware
Decision Support (CaDS) system, which consists of a situation model for shared situation awareness modelling and a group of entity
agents, one for each individual user, for focused and customized decision support. By incorporating a rule-based inference engine,
the entity agents provide functions including event classification, action recommendation, and proactive decision making. The implemen-
tation and the performance of the proposed system are demonstrated through a case study on a simulated command and control

application.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Situation awareness; Context awareness; Decision support; Intelligent agents

1. Introduction

The concept of situation awareness is well established in
the field of human factor studies in complex environments.
According to Endsley (1988), situation awareness refers to
“the perception of the elements in the environment within a
volume of time and space, the comprehension of their mean-
ing and the projection of their status in the near future”. In
the domain of command and control, wherein a designated
commander is required to exercise authority and direction
over various forces in order to achieve the given goals, a
clear picture of the current situation and an accurate pro-
jection of the future states are essential for effective deci-
sion making. As such, situation awareness modelling has
become an important component of command and control
decision support systems. Over the years, guidelines and
processes have been developed for building situation
awareness models from a goal-oriented perspective (Ends-
ley, 2001). However, to the best of our knowledge, none

* Corresponding author.
E-mail addresses: yhfeng@ntu.edu.sg (Y.-H. Feng), teng0032@ntu.
edu.sg (T.-H. Teng), asahtan@ntu.edu.sg (A.-H. Tan).

0957-4174/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2007.09.061

has incorporated the notion of context awareness for pro-
viding customized situation awareness.

Context awareness was introduced by Schilit and Thei-
mer (1994) to develop software that adapts according to
its locations of use, the collection of nearby people and
objects, as well as changes to those objects over time. With
technology advancements and the growing interest in
mobile and wearable computation devices, context aware-
ness has become one of the major research areas in those
fields. The definition of context has also expanded from
physical attributes to include device characteristics as well
as user-specific factors, such as profiles and preferences
(Dey, 2001; Harter, Hopper, Steggles, Ward, & Webster,
1999; Moran & Dourish, 2001).

Whereas situation awareness focuses on the modelling
of a user’s environment so as to help the user to be “aware
of his current situation”, context awareness is about
exploiting the context of a user and helping the user to have
a more effective interaction with the system by actively
changing the system’s behavior according to the user’s cur-
rent context or situation. In the domain of command and
control, individual users require specific sets of situation
awareness. Also, the same piece of information may have
different meanings and usages for different people in the

mailto:yhfeng@ntu.edu.sg
mailto:teng0032@ntu.edu.sg
mailto:teng0032@ntu.edu.sg
mailto:asahtan@ntu.edu.sg

456 Y.-H. Feng et al. | Expert Systems with Applications 36 (2009) 455-463

same environment. Therefore, the system must know the
context of the current user and forward focused contextual
information to the user. Building a single situation model
and presenting the full set of information to all users is
not only inefficient but highly confusing. On the other
extreme, building separate situational awareness models
for individual users is not only inefficient but more impor-
tantly, raises the issue of consistency.

In this paper, we present a system known as CaDS (for
Context-aware Decision Support) that incorporates a
shared situation awareness model but provides individual
human operators with customized views and services
through a group of entity agents. The entity agents, one
for each individual user, communicate with the situation
model and extract information of relevance for presenta-
tion to their respective users in accordance to the user con-
text. To reduce the cognitive load of the human operators,
the entity agents perform event classification and action
recommendation in a proactive manner. We have applied
CaDS to a simulated command and control domain and
evaluated its performance based on several mission scenar-
i0s. Our experimental results show that the entity agents
are able to perform event classification and action recom-
mendation with a high level of accuracy and thereby reduce
the cognitive load of the human operators significantly.

The rest of the paper is organized as follows. Section 2
presents the overall system architecture. Section 3 discusses
the various components in the shared situation awareness
model. Section 4 presents the design and implementation
of the entity agents for context-aware decision support.
Section 5 illustrates the various system functionalities
through a case study on the command and control applica-
tion. Section 6 describes our evaluation methodology and
reports the experimental results. Section 7 discusses related
work. The final section concludes and outlines the future
work.

2. System overview

Referring to Fig. 1, the CaDS architecture incorporates
a situation model managing the shared situation awareness
model and a group of entity agents, supported by an under-
lying game simulation engine. The game simulation engine
GECCO (for Game Environment for Command and Con-

Situation Model

Context-Aware

Projection
Decision Support

Entity Agent
Comprehension
Perception

Terrain Model

Game Envi t for Cc

1d and Control Operation (GECCO)

Fig. 1. The CaDS system architecture.

trol Operations) GECCO (2004) is a publicly available gen-
eric platform for creating and playing real-time multi-
player strategy games.

The situation awareness model is based on the Endsley’s
three layer structure (Endsley, 1995), but with the addition
of a terrain model for the command and control domain.
Assuming the existence of a sensor network, incoming data
are first represented at the Perception layer (level 1) of the
situation model. The Comprehension layer (level 2) then
interprets the data and provides assessment of the current
situation. To support anticipatory decision making, the
Projection layer (level 3) predicts future states based on
the understanding of the current situation. At present, only
some basic projection functions have been implemented for
illustration purpose. All three layers of the situation aware-
ness model function concurrently and iteratively.

Each entity in the environment is represented by an
entity agent. Each agent has a set of goals and strategies,
which form the basis of the entity’s behaviors. The goals
and strategies are in turn translated into executable struc-
tures like missions, plans and actions. Together with the
physical attributes such as location and strengths, all these
constitute the context based on which an agent provides a
customized set of views and services of the shared situation
awareness model to its user. Given a user context, an entity
agent pro-actively scans the situation awareness model for
relevant information in the environment. It then highlights
important events to the user according to their significance
in the given context. Our current implementation of the
entity agents is based on the production rule representation
and a logical reasoning mechanism.

3. Situation awareness modeling

We describe the various levels of the situation awareness
model, including the terrain model, in the following
sections.

3.1. Terrain model

Representing the knowledge of the physical world, ter-
rain information forms the basis of all three layers of situ-
ation awareness as well as context-aware decision support.
As such, the situation model must be able to monitor the
dynamic changes in the terrain, which in turn may result
in significant events in the situation awareness model.

The terrain model consists of two key elements, namely
nodes and links. A node represents a critical point or loca-
tion on the map with the necessary descriptive attributes. A
link corresponds to a connection or path between a given
pair of nodes, with the necessary attributes describing the
condition of the connection as well as a weight attribute
providing distance information. The terrain model further
incorporates a shortest path algorithm for identifying the
optimal route between any two nodes in the terrain.

To facilitate the process of building and editing the ter-
rain model, an interactive software tool named Terrain

Y.-H. Feng et al. | Expert Systems with Applications 36 (2009) 455-463 457

Builder (Fig. 2) has been developed in-house. Using the
notions of nodes and links, a terrain model can be easily
constructed from a two-dimensional map by clicking on
the appropriate positions on the map.

3.2. SA Level 1: Perception

The key elements in the level 1 of the situation model are
entities and events. An entity represents an object in a sit-
uation which has attributes such as identities, capabilities,
and so on. Virtually everything in the environment can
be an entity. As shown in Fig. 3, the Entity class is a general
description of an object in a situation with the basic and
necessary attributes, such as identity, trajectory, and child-
Entities. The trajectory is a sequence of movement made by
the entity.

== x|

~ Map Frame
File Draw Mode

Fig. 2. The Terrain Builder.

The Event class is a data structure encapsulating all the
relevant information of a physical occurrence in a situa-
tion. These informations are decomposed into five ele-
ments, i.e. the five W’s, namely When, Where, Who,
What and Why. An event injection triggers the system to
reassess the relevant entities’ attributes and their relations
with the others. These changes in turn result in a new state
of situation awareness and may eventually lead to critical
decisions.

3.3. SA Level 2: Comprehension

The comprehension level makes sense out of the data
provided by the perception level and integrates them into
meaningful pieces of information. Consider a movement
scenario as an example, in which a space vehicle is tasked
to move from one location to another and to avoid aliens
along the way. In this scenario, a list of high level functions
is essential for providing situation comprehension for indi-
vidual entities. An example list of such functions is given
below.

e Distance: Calculating the distance from the current loca-
tion to the destination location.

o Speed required: Calculating the speed required to reach
the destination on time.

e Fuel required: Calculating the fuel required to reach the
destination based on the current consumption rate.

e Enemy on the route: Scanning the planned route for
enemy.

e Enemy around the route: Scanning the areas around the
planned route for potential threats.

-condition : String
-volitional : boolean

i

MovableEntity

-capabilities : String
-speed : int
-fuel : int

Entity Event
* 0..*

-identity : String -when : String

-trajectory : Trajectory -where : String
-childEntities : Entity A -who : String
: -what : String
-why : String

O. . .* ?

PhysicalEntity ConceptualEntity N Relation
-position : [double, double] -relationType : String

Fig. 3. The schema of the situation model.

458 Y.-H. Feng et al. | Expert Systems with Applications 36 (2009) 455-463

o Enemy behind: Checking whether there is any enemy
coming up from behind.

e Zone of alert: Evaluating the conceptual proximity of
enemy in terms of zones.

By exploiting the relative location information provided by
the enemy detection functions and the proximity informa-
tion by the zone of alert functions, an entity is in a better
position to formulate its strategies and plans. For instance,
if an enemy is on the planned route and in zone 3 (meaning
far away), an entity might choose to continue on this route
as the enemy is still relatively far away and it may eventu-
ally go out of its route. However, if the enemy is in zone 1
(meaning near), the user might choose to re-plan his route.

3.4. SA Level 3: Projection

The ability to foresee the future is especially crucial in
command and control. Based on the understanding of
the current situation, it is possible to predict the future
states to a certain extent. For illustration, we have imple-
mented three types of projection functions: Enemy location
projection, terrain projection and goal status projection.

Enemy location projection is responsible for predicting
the future locations and the corresponding timing of a hos-
tile entity. The system keeps a finite history of the time—
space information on the enemy. Statistical inference is
then performed over these historical data in order to esti-
mate the entity’s expected location at a particular time.
Data points far back in the history are either ignored or
given a lower priority in estimating the new locations.

Whenever there is a change in terrain data, terrain pro-
Jection is conducted to predict the possible future changes,
based on the existing knowledge of terrain changes. For
example, if a road is blocked due to a heavy rain and our
prior knowledge informs that it usually takes up to three
hours for a blocked road to clear, the system would then
expect to observe another terrain change to unblock the
road within three hours.

As mentioned, an important agenda of an entity is goal
attainment. Thus an entity needs to assess the goal status at
a regular time interval. Using the present information, such
as the planned route, the entity’s fuel level and its current
speed, the projection layer of the situation awareness
model is able to compute the expected time to accomplish
the goals. All these projected situations then form a part of
the situation awareness.

4. Context-aware decision support

The primary role of an entity agent is to provide context-
aware decision support in a command and control setting so
that decisions can be made in a timely and effective manner.
To this end, we have developed entity agents with a range of
context-aware capabilities, including event classification,
action recommendation and decision mode selection. Refer-
ring to Fig. 4, each entity agent communicates with the

Entity Agent

Context-aware
Decisiorn support

Situation [~ > ____

Model

Qﬂt I J

Goals, Missions ‘
Plans, Location

Fig. 4. The entity agent model.

situation model and employs a rule-based inference engine
to provide decision support to its user according to the user
context model. The user context used by the agents consists
of goals, plans and physical attributes, such as location and
capabilities. An agent’s goal defines the target states of the
corresponding entity. An agent’s plan contains the planned
sequences of actions to achieve these goal states.

4.1. The inference engine

As the activities of an entity should be driven by its
goals, its attention must be directed accordingly. Using
an iterative process, the attainment of goals must be con-
tinuously monitored and assessed. Based on the user con-
text, especially the goals and plans, an entity agent
should thus constantly look out for situations in the envi-
ronment that may affect its goal attainment.

Our current implementation of the entity agents is based
on a production rule based engine known as DROOL
(Rupp, 2004), which is publicly available and fully open-
source. Being one of the established ways to implement sit-
uation awareness, production rules provide us with a sim-
ple and comprehensible specification for recording the
heuristics articulated by the domain experts. Based on the
Forgy’s Rete algorithm, the rules in Drools can be written
in Java, Python and Groovy via the use of XML.

Each rule in Drools consists of a list of parameters, the
IF conditions and the THEN consequence. In addition, a
salience attribute can be assigned to each rule, as a form
of priority in the activation queue. The working memory
is stateless and it contains all the knowledge or facts. Facts
can be asserted, modified and retracted from the working
memory. Rules have to be loaded into the working memory
before firing. A rule firing (execution) can modify the con-
tent of the working memory and therefore possibly trigger
other rules to fire.

4.2. Event classification

To reduce the cognitive load of human operators, infor-
mation should be presented to a user only if it is of rele-
vance and significance to the user. In our system, a user
corresponds to an entity in the simulated world. For exam-
ple, an explorer commander is represented as an explorer

Y.-H. Feng et al. | Expert Systems with Applications 36 (2009) 455-463 459

entity in the simulation. Therefore, the explorer com-
mander should only receive relevant and significant infor-
mation with respect to his/her context.

Specifically, information should be presented according
to their impact on the goals of an entity. Depending on
how an event may affect the goal attainment status of the
entity, it is presented to the user in one of the three message
levels: Events that do not affect goals are posted as Infor-
mation, events that may affect goals are issued as Warning,
and events that endanger goals are flagged as Alert.

The event classification rule module assigns an appropri-
ate message level to each incoming event that would be pre-
sented to the user according to the situation assessed. A
typical event classification rule for an explorer' is as shown
below. The TerrainRouteBlocked rule checks that if the sit-
uation type is Terrain and the event will affect the current
route of the entity, the message level is set to Alert.

RULE name = TerrainRouteBlocked
IF
SituationType==Terrain
AffectCurrentPath is TRUE
THEN
MsgLevel = Alert

4.3. Option generation and evaluation

For effective decision making in a given situation, a
human operator needs to gain a good level of situation
awareness by assessing his current situation. With the situ-
ation awareness, he can then consider the options of
actions that can be performed and decide on the best
options available. An entity agent facilitates this process
by monitoring the current situation and recommending
possible courses of actions to its user when the need arises.

The generate choice rule module is responsible for deduc-
ing choices or options for a particular situation. Currently,
there is a total of five action choices available for any given
situation, namely Resume, Increase Speed, Decrease Speed,
Reroute and Wait. The rules determine if a choice is applica-
ble in a given situation and generate a list of appropriate
choices from the set of actions. For instance, the following
ruleillustrates the generation of a choice. Under the situation
type of Terrain, if the rule detects that the current route is
blocked and an alternate route is available, a Reroute choice
is created and inserted into the choice list.

RULE name = SituationTl
IR
SituationType==Terrain
CurrentPathIsBlocked is TRUE
AlternateRouteAvailable is TRUE
THEN
action =Reroute

! Different entities can be associated with different rules.

Given the current situation, the entity agent goes
through the complete set of rules, each of which checks
for specific conditions and generates a choice when appro-
priate. The result of this process is a list of action choices
ready for ranking.

The rank choice rule module assesses each of the avail-
able choices for a given situation with a score between 0
and 1. Generally, the scores are calculated as a function
of minimal changes required and payoff in terms of goal
attainment. Thus, the option with the minimal change is
preferred among those with the same payoff. For example,
in the movement scenarios, a Reroute action is a high
change option, whereas Resume is a low change action.
Therefore, given the same level of payoff, Resume is pre-
ferred over Reroute.

4.4. Mode selection

To exploit their proactive capabilities, we further allow
entity agents to take an action automatically when appro-
priate. The guiding principle is that when a decision is of
high confidence and low significance, the action can be car-
ried out without waiting for an explicit instruction from the
human operator.

Currently, there are three decision modes defined in the
system. In the Auto mode, an entity agent automatically
chooses the best option available for the current situation.
The Recommend mode is often used when the selected
option is of high consequence, wherein the agent raises a
dialog prompt with a ranked list of the available options
for the user. The Don’t Know mode is used when the system
does not recognize the current situation and/or the system
cannot identify an appropriate action.

The mode selection rule module evaluates the decision
mode for the current situation according to the ranked list
of choices. If the agent cannot identify an action choice
that can attain the assigned goal, the decision mode is set
to Don’t Know. If the top choice is of high consequence,
the Recommend mode is used to prompt the user for a final
decision. Otherwise, the decision mode is set to Auto, under
which the agent will carry out the top action choice auto-
matically without the need for user intervention.

The following is a sample rule used for mode selection.
This rule says that the decision mode is set to Auto if the
situation type is GoalStatus and the agent has found that
it is impossible to attain the goal with the given resource.
Consequently, the agent will report to the headquarter
automatically that the entity is unable to attain its assigned
goal.

RULE name = GoalStatusReportToHQ
IR
DecisionAssist is TRUE
SituationType—==GoalStatus
GoalAttainment is FALSE
THEN
DecisionMode = Auto

460 Y.-H. Feng et al. | Expert Systems with Applications 36 (2009) 455-463

5. Case study: Mission on mars

Our implementation of CaDS is based on GECCO
(GECCO, 2004), which is capable of supporting various
scenarios, including war strategy games, fire fighting and
rescue missions. A simple exploration and movement mis-
sion is used in our study to demonstrate the various capa-
bilities described.

Given a fictional mission on Mars, a space vehicle
Explorer ERI00 is tasked to explore the unknown areas
on Mars. With a sensor network deployed on the explored
regions, the areas are continually monitored and activities
are reported to the situation model. Consider a scenario
in which the Explorer ER100 is required to return to its
space station before running out of fuel. Along the way,
the explorer may encounter aliens which will threaten his
survival and thus the attainment of the goal. Another
threat that may affect goal attainment is the changes in
the terrain situation. For example, an onset of bad weather
may prevent it from reaching the destination on time. In
our simulated environment, there is another entity called
Headquarter that oversees the Explorer’s mission and
makes critical decisions only when necessary.

During the simulation, two types of events are injected
into the virtual environment: terrain events and entity
events. A terrain event changes the terrain model, for
instance, by blocking a particular node. An entity event
leads to changes in a selected entity, either in terms of its
attribute values or activities. As the situation changes upon
each event injection, the situation model is constantly

updated accordingly. In each cycle, the agent re-assesses
the situation, gains a new understanding and possibly pro-
jects future changes.

As shown in the CaDS graphical interface (Fig. 5), all
entities are displayed as image icons overlayed on the ter-
rain map. Each entity is represented and assisted by an
entity agent so that the sensed data in the situation aware-
ness model are processed and filtered and only relevant
information are presented to the user. For each entity, its
goals, missions and plans are displayed accordingly on
the main panel, together with other important attributes,
such as the fuel level and the health index. Each entity
agent communicates with its user through a message panel
(in the bottom right corner), in which incoming events are
displayed according to their significance, and recommenda-
tions are provided to the user as the situation arises. The
message panel and the graphical terrain map together
enhance the user awareness of the situation in a context-
aware manner. The display on the interface automatically
switches into the corresponding perspective when a differ-
ent entity is selected.

Besides classifying and displaying events in the appro-
priate message levels, the entity agent pro-actively assesses
the situation for available action options and ranks them
accordingly. If an action is required of which the entity
agent has no authority to perform, the agent raises a choice
dialog window to the user, with a ranked list of the actions
and its recommendations. As shown in Fig. 6, an alien is
spotted along the planned route of ER100. The agent
detects the threat, assesses the various options, and recom-

]

i ,Niﬁﬂi‘;'?’!'!,tﬂ’il Information
Lt

Funt a0

ERI00 brings up its
context information

Explorer ER Context Information

Selecting EXPLORER [

Selecting ALIEN
brings up its
context informatiol

Mission

o racuen o Base Statiss higha by 5 aay 1600 v | MISSION

|
| essane board
Goel statement Atammant | stanes =]
! [fo auve to Jocativa Alpha 1Lz D day 1630 Mous. 28 L 9W£n i
- = nemy Detectec Around 1
| [GOAIS |- .70 e i 2crm 7 ear oce: o 7 4 map ocaton (562 87, 27203}
I : Decision Mode = "Auto”
-> Move o Bate I -> Beta [l -> Gaxne l -> Bese Alpas . 5 x *Reaume” iz Automatically chosen out of 3 choices
rion Nods 0 Woae Z 3Moda 6 -Mone 12 ace 13 -aede 20 ko 21 -3 PRRE | projected Enemy to Reach (299,00, 306.00) near Noge 1D = 6.
| . , SR | ot e = Dyduanatmens
CurrentSpaed 500 * ';f: e —
Explorsr ER100 m
L sk Engageable TRUF -
{ Health 1000 Fuel 9524510 '-_"L
| Miiates (R + T Al Hesaages

Fig. 5. The context-aware graphical interface of CaDS.

Y.-H. Feng et al. | Expert Systems with Applications 36 (2009) 455-463 461

Taking fisws Path viai Hode 3 > Bata 1 > Hode
38 > Node 42 > Node 41 > Node 7 3 Noda &
> Node 19 5 Hode 17 > Node 16 3 Node 15
2 Wode 50 » Node 46 > Ganvma 11 > Node 48

1|5 toods 24 > Node 25 > Apha . i

i
i

i

i

i

i

! sy,
i

i

i

i

Required Speed = 45.53.

ij&!'l

reaned e ciees. [4] Detail information

[Raoosaras

Active goss | Guueued gool | Attaned goals | Unattainsbie gods |

|“W e | s w0 mase suanien 4 [2] RAISES Alert message containing

msspsd gUITENt situation and decision mode

Goal Statement Atcainnent Status

[To move to location Alpha I by D day 1600 Nour. a2 o

Flans

Feom Node 0 ->Hode 2 -3Node § ->Node 12 ->Wode 13 ->Node 20 ->Node 24 ->
Hode 25 ->Hode 26.

Fig. 6. An illustration of context-based decision support.

mends Reroute as the best solution. As Reroute is a major
decision, the action is posted as an recommendation to the
user together with a detailed description of the analysis and
reasoning process.

6. Performance evaluation

In this section, we present an experimental study in
which a human operator is asked to gauge the accuracy
of the entity agent acting for Explorer ER100 in terms of
event classification and action recommendation. The
human operator is to determine, given a specific situation,
if the system classifies an incoming event or recommends
an action in an appropriate manner. In addition, we esti-
mate the effectiveness of the ER100 agent in terms of the
reduction in the cognitive load of its commander.

During the course of simulations, events can be gener-
ated based on either implicit or explicit triggers. Implicit
triggers are generated from the natural evolution of the
simulation (e.g., the programmed responses of an entity
towards the others), whereas explicit triggers are the results
of external event injection. We use the following two key
parameters in generating the test scenarios: (i) Initial posi-
tion: The initial position of ER100 determines its route
selection and therefore influences the subsequent evolution
of the simulation; and (ii) Terrain change: Any variation in
the terrain data, for example the blocking of a road and the
clearing of a blocked road, may induce the entity into mak-
ing the necessary adjustment to its current plan.

Each distinct initial position of ER100 marks a unique
scenario setting. In each scenario, multiple situations are
created and decisions are made as the scenario plays out.
A total of 73 situations based on five scenarios have been
collected. The goal of ER100 remains unchanged through-
out all the scenarios.

6.1. Event classification

A primary role of entity agents is to classify incoming
events into three levels of significance, namely Information,
Warning and Alert. We define two performance measures
for this function, namely the accuracy of event classifica-
tion and the reduction in the cognitive load for the human
operators.

Based on the test situations, a human operator is asked
to gauge the accuracy of the system in terms of event clas-
sification. When the message level assigned by CaDS to an
event is different from that of the operator, the specific
event classification is deemed as inappropriate. As shown
in Table 1, the entity agent achieves a high accuracy of
100.0% in classifying events. This high level of performance
is achievable as the task of classifying events is relatively
straightforward and our rules are sufficiently rich to cover
most types of events.

Context-based classification of events contributes to the
reduction of cognitive load on the human operators.
Instead of having to attend to each and every incoming
events, a user now only needs to pay attention to events
classified as Warning and Alert. To evaluate the system’s
performance in quantitative terms, we define the cognitive
load reduction (CLR) index for an event type ¢ formally

Table 1
The prediction accuracy in event classification
Number of Number of Prediction
predictions correct accuracy (%)
Information 30 30 100.0
Warning 34 34 100.0
Alert 9 9 100.0
Total 73 73 100.0

462 Y.-H. Feng et al. | Expert Systems with Applications 36 (2009) 455-463

Table 2
The CLR indices for warning and alert events

Total number of events Number of warnings Number of alerts

73 35 8
CLRI 52.1% 89.0%
Table 3
The prediction accuracy in action recommendation
Action Number of Number of Prediction
choice predictions matches accuracy (%)
Increase 2 1 50.0
speed
Decrease 0 0 NA
speed
Resume 20 15 75.0
Reroute 23 23 100.0
Wait 0 0 NA
Total 45 39 86.7

as R.=1— (N./A), where N, is the number of event ¢
requiring attention and N is the total number of incoming
events. As shown in Table 2, the entity agent has been effec-
tive in reducing the cognitive load of the ER100 com-
mander by 52.1% for Warning and 89.0% for Alert.

6.2. Action recommendation

In this set of the experiments, we compare the recom-
mendations made by the entity agent against the preferred
action choices of the human operator. As observed in
Table 3, among the actions chosen, the entity agent has a
prediction accuracy of 50.0%, 75.0% and 100.0% for

Increase Speed, Resume and Reroute, respectively. Fig. 7
shows an instance of the incorrect action recommenda-
tions. The resume action was suggested to the human oper-
ator when in fact the reroute option would be the more
appropriate one. As the scenario evolved, the Explorer
ER100 was observed to sustain attack by the alien.

We note that not all the action choices are used during
the experiments. This indicates that the specified rules have
not been able to cover the space of the available actions
adequately, especially on the aspect of controlling speed.
Potentially, more rules can be added to cover this defi-
ciency. However, the level of system complexity increases
as the decision space gets more extensive with the increased
numbers of rules and situation parameters. In particular, as
different initial conditions may give rise to a variety of sit-
uations as the scenario evolves, the task of addressing every
single possible situation is a great challenge.

7. Related work

Intelligent agents have been used for situation awareness
modelling in a number of prior work. Urlings, Tweedale,
Sioutis, and Ichalkaranje (2003) employ BDI (Beliefs—
Desires—Intentions) agents to enhance situation awareness
of human—-machine team in a military environment. Based
on the JACK agent development environment and the
Unreal Tournament (UT) game engine, they present a
multi-agent framework. Three types of agents are
described, including a commander agent for supporting
the human commander, a communication agent for com-
munication between the commander agent and the human
commander, and troop agents for exploring the environ-
ment and for executing the orders. Although their com-
mander agent is similar to our entity agents, Urling et al.
are focusing on situation awareness in single agent and they

lessage Board

.Alert

Enermy Detected Around Pathi
EnemylD Alien

an Mode = "Auto”

Inappropriate option
choice as it leads @

"--In Zone 1--" Near Node Node 12 At map location (662

3 Automatically chosen out of 3 choices

80, 338.25)

Fig. 7. An incorrect prediction by CaDS.

Y.-H. Feng et al. | Expert Systems with Applications 36 (2009) 455-463 463

do not employ the concept of shared situation awareness.
In addition, although a high level description of the com-
mander agent is provided, there is no concrete account
on the specific decision support functions implemented
and their evaluation.

So and Sonenberg (2004) incorporate the notion of situ-
ation awareness into a computational model for proactive
agent behavior. Their model is based on a rule-based
knowledge representation and a forwarding reasoning
mechanism. While they develop a meta-control strategy
for directing an agent’s attention in sensing and delibera-
tion, their focus again is on single agent and the approach
is to build a situation awareness model for each agent.

More recently, Thangarajah, Padgham, and Sardina
(2006) also adopt the notion of ‘situation’ for decision
making in intelligent agents. Instead of using the Endsley’s
three-level hierarchy, they treat situations as a conceptual
entity which arguably allows a richer semantics specifica-
tion. For modelling the agents’ reasoning process, Than-
garajah et al. extend a BDI language called CAN for
rule-based specification of the agents’ behavior. Although
they see the need of organizing situation objects according
to their relevance to individual agents for efficiency reason,
their system again does not have the notion of shared situa-
tion awareness and context-aware decision support.

8. Conclusions

We have shown how context-awareness can be
exploited in situation assessment and how context-aware
decision support can be used to reduce the cognitive load
of human operators in the command and control
domain. Compared with traditional situation awareness
models, our system provides customized views and ser-
vices out of a shared situation awareness so as to sup-
port focused and effective situation awareness based on
context. More importantly, we illustrate that a context-
based inference engine can be used to support a myriad
of proactive decision support functions that facilitate
commanders to operate in complex and time critical
operations. Whereas Endsley has also advocated a
goal-oriented approach to designing situation models,
we provide a computational model as well as its imple-
mentation for exploiting goal-based contextual informa-
tion to achieve user-specific situation awareness.

While the current decision support engine based on pro-
duction rules has served the purpose of knowledge acquisi-
tion and the proof of concepts, the task of defining the
necessary heuristics based on a bounded definition of the
command and control application and responding to each
and every new development can be tedious. Instead of
using rule-based specification, machine learning capabili-

ties can be incorporated to aid in expanding the scope of
the decision-making module. In fact, the task of incorpo-
rating learning for situation awareness and context-based
decision support has been identified as our next research
target. Ultimately, we are moving towards a cognitive deci-
sion system that will support both direct rule-based knowl-
edge specification as well as learning based knowledge
acquisition based on human-agent interaction.

Although our experimentation thus far is based on a rel-
atively simple scenario of explorer movement and alien
avoidance, the framework theoretically can be applied to
the general domain of command and control, including
battlefield modelling and tactical warfare planning. These
will form part of our future work.

Acknowledgements

The reported work is supported in part by a research
grant from the Intelligent Systems Centre. The authors
thank Jun Jin and Chun-Yip Lam for contributing to the
development of the Mission On Mars simulator.

References

Dey, A. K. (2001). Understanding and using context. Personal and
Ubiquitos Computing, 5, 4-7.

Endsley, M. R. (1988). Design and evaluation for situation awareness
enhancement. In Proceedings of the human factors society 32nd annual
meeting, Santa Monica, CA (Vol. 1, pp. 97-101).

Endsley, M. R. (1995). Toward a theory of situational awareness in
dynamic systems. Human Factors, 37, 32-64.

Endsley, M. R. (2001). Designing for situation awareness in complex
systems. In Proceedings of the second international workshop on
symbiosis of humans, artifacts and environment, Kyoto, Japan.

Gecco (2004). Game environment for command and control operations.
Auvailable from:<http://www.csc.kth.se/tcs/gecco/>.

Harter, A., Hopper, A., Steggles, P., Ward, A., & Webster, P. (1999). The
anatomy of a context-aware application. In Proceedings of the 5th
annual ACMIIEEE international conference on mobile computing and
networking, Seattle, WA (pp. 59-68).

Moran, T. P., & Dourish, P. (2001). Introduction to this special issue on
context-aware computing. Human Computer Interaction, 16, 87-95.
Rupp, N. A. (2004). An introduction to the drools project. Available from:

<http://www.theserverside.com/tt/articles/article.tss?l=Drools/>.

Schilit, B., & Theimer, M. (1994). Disseminating active map information
to mobile hosts. IEEE Network, 8, 22-32.

So, R., & Sonenberg, L. (2004). Situation awareness in intelligent agents:
Foundations for a theory of proactive agent behavior. In Proceedings
of IEEEIWICIACM international conference on intelligent agent
technology (pp. 86-92).

Thangarajah, J., Padgham, L., & Sardina, S. (2006). Modelling situations
in intelligent agents. In Proceedings of fifth international joint confer-
ence on autonomous agents and multiagent systems, Hakodate, Japan
(pp. 1049-1051).

Urlings, P., Tweedale, J., Sioutis, C., & Ichalkaranje, N. (2003). Intelligent
agents and situation awareness. In Proceedings of the 7th international
conference on knowledge-based intelligent information and engineering
systems, LNCS 2774 (pp. 723-733).

http://www.csc.kth.se/tcs/gecco/
http://www.theserverside.com/tt/articles/article.tss?l=Drools

	Modelling situation awareness for Context-aware Decision Support
	Introduction
	System overview
	Situation awareness modeling
	Terrain model
	SA Level 1: Perception
	SA Level 2: Comprehension
	SA Level 3: Projection

	Context-aware decision support
	The inference engine
	Event classification
	Option generation and evaluation
	Mode selection

	Case study: Mission on mars
	Performance evaluation
	Event classification
	Action recommendation

	Related work
	Conclusions
	Acknowledgements
	References

