
A Performance Evaluation of Ontology-based Context Reasoning ∗

(Experience report)

Alessandra Agostini Claudio Bettini Daniele Riboni

DICo, University of Milan
via Comelico 39, I-20135 Milan, Italy
{agostini,bettini,riboni}@dico.unimi.it

Abstract

The CARE middleware aims at supporting context-
aware adaptation of Internet services in a mobile computing
environment. The CARE hybrid reasoning mechanism is
based on a loose interaction between ontological reasoning
and efficient reasoning in a restricted logic programming
language. In this paper we report recent experimental re-
sults on ontology-based context reasoning that support the
hybrid approach.

1 Introduction

In the last years, the research group of the DaKWE lab-

oratory at the University of Milan has been working at the

specification and implementation of a middleware – named

CARE1 – to support context-aware adaptation of Internet

services for mobile users. Since Internet services can be

possibly accessed by a huge number of users at a time, ef-

ficiency and scalability are mandatory. As a consequence,

various efficient contextual reasoning procedures have been

proposed for specific applications like telecommunication

services (e.g., [11]) and e-commerce (e.g., [6]). The adapta-

tion of these classes of services can be effectively performed

taking into account context data such as the ones that de-

scribe the network, device capabilities, and categories of

users’ interests. This category of data – that we call shal-
low context data – can be naturally modeled by means of

attribute/value pairs, adopting standard representation for-

malisms such as CC/PP [12].

On the other hand, mobility claims for the use of a wider

set of context data, including complex data such as the user

current activity, the set of persons and objects she can in-

teract with, and her surrounding environment. A quite large

∗This work has been partially supported by Italian MUR (FIRB ”Web-

Minds” project N. RBNE01WEJT 005).
1Context Aggregation and REasoning middleware.

consensus has been reached in the research community to-

wards the use of expressive languages in order to represent

and reason with this data, that we call ontology-based con-

text data. Various frameworks for reasoning with this class

of data have been recently proposed (e.g., [5, 7]) for ap-

plications requiring sophisticated adaptation, like ambient

intelligence applications. Since the formalism of choice is

typically OWL or some of its variations, the reasoning tasks

are known to have high complexity. While some applica-

tions may not have strict requirements in terms of efficiency

– since generally they serve a limited number of users at a

time – the delay introduced by ontological reasoning is less

problematic.

In the CARE framework we need to model both the

above mentioned classes of context data. We have de-

fined an efficient logic programming language for reasoning

with shallow context data, while we adopt OWL-DL [10] as

the language for representing and reasoning with ontology-

based context data. Moreover, in order to have a uniform

context representation language, we defined new CC/PP vo-

cabularies to have a mapping between OWL concepts and

CC/PP attributes. In CARE, policy rules defining how con-

text values can be derived, can contain preconditions in-

volving shallow as well as ontology-based context data that

may have to be derived by ontological reasoning. Since effi-

ciency is a main issue, a straightforward solution for avoid-

ing the execution of ontological reasoning at the time of

the service request is to perform reasoning asynchronously.

However, in particular cases ontological reasoning must be

performed at the time of the user request, after having pop-

ulated the ontology with instances collected from the dis-

tributed context sources. This happens, for example, when

the reasoning can only be performed after context data has

been merged.

In this paper we report the results of some experiments

we performed for assessing the feasibility of our approach.

In Section 2 we briefly describe the CARE middleware, and

we illustrate our hybrid reasoning approach with an exam-

Proceedings of the Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops(PerComW'07)
0-7695-2788-4/07 $20.00 © 2007

���
���

����

���� ����	
��

�����
�

��
�
����

��	�����
��
�����

��
�����

�����
�

� �

�

�

�

�

�

�

�������

��������

	��
��	
���

����

��
����
�

������

���
��

��������

�����

��

���
��

��������

��
�
�����

�����
�

��
�
����

��	�����

���
��

��������

�

��
�
���

��	�����

Figure 1. The CARE middleware architecture.

ple; In Section 3 we present the experimental results; Sec-

tion 4 concludes the paper.

2 Hybrid reasoning in CARE

The CARE middleware and its underlying technical so-

lutions have been presented in [1, 4]. The main components

of the CARE architecture are shown in Figure 1. In our

framework the contextual data, being by nature distributed,

is managed by different entities (i.e., the user, the network

operator, and the service provider). We call profile the sub-

set of context data collected and managed by a certain en-

tity. Each entity has a dedicated profile manager for han-

dling its own context data (called UPM, OPM, and SPPM, re-

spectively). Profiles include both shallow context data and

ontology-based context data which is expressed by means

of references to ontological classes and relations. Both the

user and the service provider can declare policies in the

form of rules over context data in order to derive higher-

level context data starting from more simple ones, and to

determine the adaptation parameters of the service. A ded-

icated module (called CONTEXT PROVIDER) is in charge

of building the aggregated context data for the application

logic, evaluating adaptation policies and solving possible

conflicts. The architecture includes modules for performing

ontological reasoning.

As anticipated in the introduction, we adopt hybrid rule-

based/ontological reasoning for modeling context. As a

matter of fact, policy rules can contain preconditions involv-

ing context data derived through ontological reasoning. In

order to illustrate the hybrid mechanism with an example,

suppose that a user declared a policy rule asking to set her

status to busy when involved in a business meeting:

If CurrentActivity = ‘BusinessMeeting’ (1)

then Status = ‘Busy’

The semantics of the rule precondition is that the condition

holds if the instance CurrentActivity (that represents the ac-

tivity currently performed by the user) belongs to the Busi-
nessMeeting ontological concept. Hence, ontological rea-

soning must be performed before evaluating the rule, in or-

der to check whether the instance CurrentActivity belongs to

the concept BusinessMeeting or not. As an example, con-

sider this definition of the BusinessMeeting activity:

BusinessMeeting ≡ Activity � ≥ 2 Actor �
∀Actor.Employee � ∃Location.WorkBuilding

Based on this definition, in order to check whether the

user is involved in a business meeting it is necessary to

have information about the people she is with (possibly de-

rived by the user profile manager analyzing her agenda)

and her current location (possibly provided by the network

operator). These data must be retrieved by the CONTEXT

PROVIDER from the UPM and OPM, respectively, and is

added to the assertional part of the ontology (i.e., that part

of the ontology – called ABox – that contains the individuals

of the addressed domain).

We have investigated different approaches for overcom-

ing the computational issues of ontological reasoning. The

solution we adopt consists in keeping the terminological

part of the ontology (i.e., that part of the ontology – called

TBox – that contains the definition of classes and relations

of the addressed domain) static, in order to be able to per-

form the TBox classification [3] in advance to the service

request. In this way it is possible to save a good amount of

computational time while serving user requests, since the

ontology classification task is particularly expensive.

Furthermore, the assertional part of the ontology can be

filled in advance to the service request with those instances

that are known a priori, i.e., before retrieving context data

from the distributed profile managers. This data obviously

depends on the particular domain addressed by the ontol-

ogy. In the case addressed by our example, the ABox should

be populated with a huge number of instances, including

those that correspond to the employees of the user organi-

zation, and to particular locations (e.g., rooms belonging to

the organization). After having populated the ontology with

these instances, it is possible to perform the ABox realiza-

tion [3] in advance to the service request. The realization of

the ABox consists in computing, for each individual of the

ontology, the most specific classes that it instantiates.

Once again, ABox realization is an expensive reason-

ing task; hence, it is unsuitable to perform realization at

the time of the service request when the ontology contains

a huge number of instances. At the time of the user re-

quest, the ABox is filled only with those instances that are

retrieved from the profile managers and have a mapping to

ontological classes and relations. Considering the ontology

definition of our example, the instances to be inserted into

the ontology correspond to a new activity currentActivity –

the one performed by the user – and to the relations that

Proceedings of the Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops(PerComW'07)
0-7695-2788-4/07 $20.00 © 2007

link that activity to its actors and location. Adopting this

approach, the only reasoning task that must be performed at

the time of the service request is the realization of the single

currentActivity instance.

3 Experimental evaluation

In order to assess the feasibility of this approach, we per-

formed some experiments on executing ontological reason-

ing with the OWL-DL ontology we defined for modeling

the socio-cultural environment of mobile users presented

in [2]. The reasoning task we performed corresponds to the

realization of an instance CurrentActivity belonging to the

Activity class.

3.1 Experimental setup

This experimental setup simulates the case in which on-

tological reasoning is used to derive the specific activity that

is currently performed by the user. As explained before,

our approach consists in executing ontological reasoning

mostly in advance to the service request. For keeping com-

putational times acceptable for interactive services, we per-

form ontological reasoning at the time of the service request

only on small subsets of the whole ontology, populating the

ABox with only those instances that are necessary for de-

riving new context data. For instance, in Experiments A

and B we use the subset of our ontology – composed by 12

classes – that is sufficient to define a particular activity we

are interested into. Ontological reasoning is performed by

the Racer [9] ontology reasoner, on a two-processor Xeon

2.4 GHz workstation with 1.5GB of RAM, using a Linux

operating system. Results are calculated as the average of

ten runs. Standard deviation is shown in plots.

3.2 Experiment A: Ontological reason-
ing with an increasing number of in-
stances obtained from the aggregated
profile

This experiment aimed at evaluating the feasibility of

on-line ontological reasoning with a growing number of in-

stances added to the ABox at the time of the service request.

Since these instances are gathered from the aggregated pro-

file, they are not known a-priori. Hence, realization must be

performed for assigning these new instances to the classes

they belong to.

TBox The TBox consists of the 12 classes that are used to

define the UnimiInternalMeeting concept.

Figure 2. Results of Experiment A

Figure 3. Results of Experiment A with a
small number of instances

ABox Before the service request, the ABox con-

tains:

• a variable number k of UnimiEmployees; k corresponds

to the values of the x axis of plots in Figures 2 and 3;

• 1 UnimiBuilding.

At the time of the service request, the ABox is filled

with:

• the CurrentActivity instance;

• 1 relation that links CurrentActivity to the building in

which it is performed;

• k relations that link CurrentActivity to its actors.

Results Experimental results are shown in Figures 2

and 3. Execution times grow exponentially with the number

k of instances added to the ABox at the time of the service

request (see Figure 2). As shown in Figure 3, execution

times with this subset of our ontology are acceptable (i.e.,

less than 100ms) only when the number of instances added

at the time of the service request is small.

Proceedings of the Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops(PerComW'07)
0-7695-2788-4/07 $20.00 © 2007

Figure 4. Results of Experiment B: Ontologi-
cal reasoning with increasing ABox size

3.3 Experiment B: Ontological reasoning
with an increasing number of in-
stances known a priori

This experiment aimed at evaluating the feasibility of

on-line ontological reasoning with a growing number of in-

stances added to the ABox before the service request. Since

these instances are in the ABox before the service request,

they can be realized in advance. Hence, in this case the only

reasoning task to be performed at the time of the service re-

quest is the realization of the CurrentActivity instance.

TBox The TBox consists of the 12 classes that are used to

define the UnimiInternalMeeting concept.

ABox Before the service request, the ABox con-

tains:

• 5 UnimiEmployees;

• 1 UnimiBuilding;

• k instances for each one of the remaining 10 classes; k
corresponds to the value of the x axis of plots in Fig-

ures 4 and 5.

At the time of the service request, the ABox is filled

with:

• the CurrentActivity instance;

• 1 relation that links CurrentActivity to the building in

which it is performed;

• 5 relations that link CurrentActivity to its actors.

Results Experimental results are shown in Figures 4

and 5. Execution times grow linearly with the number of

instances added to the ABox before the service request (see

Figure 5. Results of Experiment B with a
small number of instances

Figure 4). The results obtained when adding a small num-

ber of instances exhibit a strange behaviour (see Figure 5),

which was confirmed when executing experiments on a dif-

ferent machine. These results are probably due to the in-

ternal behaviour of the Racer reasoner. Even if the time

of ontological reasoning execution increases with the cardi-

nality of the population of the ABox, performance is not too

badly affected.

3.4 Experiment C: Ontological reasoning
with a realistic ontology and increas-
ing ABox size

This experiment aimed at evaluating the feasibility of on-

line ontological reasoning with a realistic ontology and an

increasing number of instances populating the ABox. In

this experiment we tried to reproduce a realistic ontology,

which describes more than 100 activities, and other 400

concepts (with a maximum depth of 5 in the subclasses hi-

erarchy). The ABox contains 2000 instances belonging to

classes that are not involved in reasoning (i.e., classes that

are not subclasses of Activity), and a growing number of

instances that belong to classes involved in the ontological

reasoning. Since these instances are added to the ABox be-

fore the service request, their realization can be performed

off-line. The only reasoning task to be performed at the time

of the service request is the realization of the CurrentActiv-
ity instance.

TBox The TBox consists of:

• the 12 classes that are used to define the InternalMeeting
concept;

• other 100 subclasses of Activity (similar to the previous

ones, but with different cardinality restrictions);

Proceedings of the Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops(PerComW'07)
0-7695-2788-4/07 $20.00 © 2007

Figure 6. Results of Experiment C: Ontolog-
ical reasoning with a realistic ontology and
increasing ABox size

• 400 classes that are not involved in the definition of Ac-
tivity and its subclasses.

ABox Before the service request, the ABox con-

tains:

• 2000 instances belonging to classes not involved in the

reasoning task;

• 5 Persons;

• 1 WorkBuilding;

• k instances belonging to classes involved in the reason-

ing task; k corresponds to the values of the x axis of the

plot in Figure 6.

At the time of the service request, the ABox is filled

with:

• the CurrentActivity instance;

• 1 relation that links CurrentActivity to the building in

which it is performed;

• 5 relations that link CurrentActivity to its actors.

Results Experimental results are shown in Figure 6. Exe-

cution times grow linearly with the number of instances that

belong to classes involved in the reasoning task. When the

TBox contains a large number of classes (more than 500 in

this setup) and the ABox is filled with a rather large number

of instances (more than 2000), ontological reasoning exe-

cution time is in the order of seconds, even if few instances

belong to classes involved in the reasoning task.

3.5 Remarks

Various performance evaluations and experiments about

executing reasoning with ontological languages have been

presented before (see, e.g., [8]), which confirm that scala-

bility is a main issue.

With respect to the problem of reasoning with context

data, our approach has some similarity with the one pro-

posed by Wang and colleagues in [13]. While they perform

experiments with ontologies whose size is comparable with

the one used in our experiments, the execution times they

obtain grow exponentially with the ontology size. On the

contrary, by performing part of the processing in advance to

the service request, we can improve scalability, since onto-

logical reasoning execution times grow linearly with respect

to the ontology size (see Experiments B and C).

4 Conclusions

In this paper we presented an experimental evaluation of

the feasibility of the hybrid reasoning approach adopted by

the CARE framework. Experimental results with a complex

ontology (having more than 500 classes and more than 2000

instances) show that the execution time of reasoning tasks

like instance realization is in the order of seconds. As a

consequence, ontological reasoning at the time of the ser-

vice request is unfeasible for most Web applications and

services, and should be executed asynchronously with re-

spect to the service requests. On the other hand, ontological

reasoning at the time of the service request is feasible when

executed on simple ontologies populated by a small num-

ber of instances. These small ontologies can be profitably

used for executing particular reasoning tasks about a spe-

cific class of context data.

References

[1] A. Agostini, C. Bettini, N. Cesa-Bianchi, D. Maggiorini,

D. Riboni, M. Ruberl, C. Sala, and D. Vitali. Towards

Highly Adaptive Services for Mobile Computing. In Pro-
ceedings of IFIP TC8 Working Conference on Mobile Infor-
mation Systems (MOBIS), pages 121–134. Springer, 2004.

[2] A. Agostini, C. Bettini, and D. Riboni. Loosely Coupling

Ontological Reasoning with an Efficient Middleware for

Context-awareness. In Proceedings of the Second Annual In-
ternational Conference on Mobile and Ubiquitous Systems:
Networking and Services (MobiQuitous 2005), pages 175–

182. IEEE Computer Society, 2005.
[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and

P. F. Patel-Schneider, editors. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cam-

bridge University Press, 2003.
[4] C. Bettini and D. Riboni. Profile Aggregation and Policy

Evaluation for Adaptive Internet Services. In Proceedings
of The First Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services (Mobiqui-
tous), pages 290–298. IEEE Computer Society, 2004.

[5] H. Chen, F. Perich, T. W. Finin, and A. Joshi. SOUPA: Stan-

dard Ontology for Ubiquitous and Pervasive Applications.

Proceedings of the Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops(PerComW'07)
0-7695-2788-4/07 $20.00 © 2007

In Proceedings of the 1st Annual International Conference
on Mobile and Ubiquitous Systems (MobiQuitous 2004),
Networking and Services, pages 258–267. IEEE Computer

Society, 2004.
[6] B. Grosof. Prioritized Conflict Handling for Logic Pro-

grams. In Proceedings of the International Logic Program-
ming Symposium (ILPS), pages 197–211, 1997.

[7] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang. An

Ontology-based Context Model in Intelligent Environments.

In Proceedings of Communication Networks and Distributed
Systems Modeling and Simulation Conference, 2004.

[8] Y. Guo, Z. Pan, and J. Heflin. An Evaluation of Knowl-

edge Base Systems for Large OWL Datasets. In Proceedings
of the Third International Semantic Web Conference (ISWC
2004), volume 3298 of Lecture Notes in Computer Science,

pages 274–288. Springer, 2004.
[9] V. Haarslev and R. Möller. RACER System Description.

In Proceedings of Automated Reasoning, First International
Joint Conference (IJCAR 2001), pages 701–706. Springer,

2001.
[10] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen.

From SHIQ and RDF to OWL: The Making of a Web Ontol-

ogy Language. Journal of Web Semantics, 1(1):7–26, 2003.
[11] R. Hull, B. Kumar, D. Lieuwen, P. Patel-Schneider,

A. Sahuguet, S. Varadarajan, and A. Vyas. Enabling

Context-Aware and privacy-Conscius User Data Sharing. In

Proceedings of the 2004 IEEE International Conference on
Mobile Data Management, pages 187–198. IEEE Computer

Society, 2004.
[12] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm,

M. H. Butler, and L. Tran. Composite Capa-

bility/Preference Profiles (CC/PP): Structure and Vo-

cabularies 1.0. W3C Recommendation, W3C, Jan-

uary 2004. http://www.w3.org/TR/2004/REC-CCPP-struct-

vocab-20040115/.
[13] X. H. Wang, T. Gu, D. Q. Zhang, and H. K. Pung. Ontol-

ogy Based Context Modeling and Reasoning using OWL.

In Proceedings of Second IEEE Annual Conference on Per-
vasive Computing and Communications Workshops, pages

18–22. IEEE Computer Society, 2004.

Proceedings of the Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops(PerComW'07)
0-7695-2788-4/07 $20.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

