
PersonisJ: mobile, client-side user modelling

Simon Gerber, Glen Pink, Michael Fry, Judy Kay, Bob Kummerfeld, and
Rainer Wasinger

School of Information Technologies, University of Sydney, Sydney, NSW 2006,
Australia

{sger6218,gpin7031,mike,judy,bob,wasinger}@it.usyd.edu.au

Abstract. The increasing trend towards powerful mobile phones opens
many possibilities for valuable personalised services to be available on
the phone. Client-side personalisation for these services has important
bene�ts when connectivity to the cloud is restricted or unavailable. The
user may also �nd it desirable when they prefer that their user model be
kept only on their phone and under their own control, rather than un-
der the control of the cloud-based service provider. This paper describes
PersonisJ, a user modelling framework that can support client-side per-
sonalisation on the Android phone platform. We discuss the particular
challenges in creating a user modelling framework for this platform. We
have evaluated PersonisJ at two levels: we have created a demonstrator
application that delivers a personalised museum tour based on client-side
personalisation; we also report on evaluations of its scalability. Contribu-
tions of this paper are the description of the architecture, the implemen-
tation, and the evaluation of a user modelling framework for client-side
personalisation on mobile phones.

1 Introduction

Personalisation has the potential to o�er many bene�ts, particularly in reducing
information overload by enabling a person to be more e�cient in �nding the
information they need or want. Personalised systems can also be valuable in an
active role, alerting the user to useful information. But there is a tension between
such personalisation and privacy; the user model that drives personalisation is
based upon the user's personal information. Moreover, there is evidence of con-
siderable community concern about the proper protection of such information.

One way to address such concerns is to perform the personalisation at the
client-side, with the user's model stored on their own system. This is in con-
trast to the widespread server-side personalisation. Consider, for example, an
e-commerce website such as `www.amazon.com', where customers must register
with the site in order to shop. The site can log every action they take while
they are logged in, such as the items they view, add to their shopping carts and
ultimately buy. This is used to create a user-pro�le which is held on the server.
This means that the website's owners are in control of this user model and the
way it is used. In client-side personalisation, the user model is controlled by the



user and the personalised applications that also run on their machine, under
their control.

We now consider the issue of mobile personalisation. Mobile phones are pro-
viding an increasingly important interface for people to access information. There
are currently over 3.5 billion mobile phone subscribers [4] and there is an increas-
ing trend for these to have data subscriptions (for example, 40% of mobile users
in Japan have a data plan). Interestingly, studies of how people are actually
using their mobiles reveal that many use their phones for internet access, even
while in their own homes or with another computer nearby [15].

At present, personalisation of the information delivered to mobile phones is
typically performed at the server-side, by services in the cloud. This has been a
necessity due to the limited computational power and memory of mobile phones.
However, with widely-available consumer phones becoming increasingly power-
ful, it is becoming feasible to support client-side personalisation for these devices.

To support mobile personalisation on phones, we need new tools to support
the creation of new applications. PersonisJ is one such tool, providing a frame-
work for developing context-aware, personalised applications on a mobile phone.
It can support reuse of user modelling information by arbitrary personalised ap-
plications running on the device. PersonisJ is unlike other personalisation shells
or context-aware frameworks in that it treats the mobile device as a platform,
rather than simply as an actor in a larger framework [10]. It also has to operate
under very di�erent constraints from previous user modelling frameworks, be-
cause it must take account of the power constraints for programs running on a
mobile phone.

The next section reviews related work. Then we describe the architecture and
implementation of PersonisJ followed by our validation of it by demonstrating
its use in the MuseumGuide application and our evaluations of its scalability.
Finally, we discuss the implications of the work and future directions.

2 Related Work

The relatively recent emergence of powerful mobile phones has created new pos-
sibilities for mobile personalisation and the associated needs for personalisation.
For example, studies point to the need for personalisation of mobile search in-
terfaces [5]. There has been considerable exploration of mobile personalisation
for a range of contexts and types of application. For example, personalisation of
information available has been based on the user's social context [9] and location
[2]. In e-commerce, personalisation has been widely deployed, with an increasing
role for mobile, m-commerce [8]. Some interesting forms include systems that
enable retailers to push recommendations to the mobile customer [13] and to of-
fer both personalised product details and in-store customer advice [14]. Another
important class of applications [11] is the mobile guides which can cover roles as
diverse as museum guides, navigation systems and shopping assistants [12]. For
example, the PEACH [17] system delivered personalised information about the
art in a museum on PDAs.



Early research in mobile personalisation has been dominated by a view of
the mobile phone as the client of (and portal to) a powerful server which was
responsible for the personalisation, often restricted to a particular space such as
a university or hospital [3]. In the mobile personalisation work described above,
the architecture of the systems places the personalisation at the server side.
We have not found reports of mobile client-side personalisation, or even mobile
applications that reuse frameworks for client-side personalisation.

One of the barriers for client side personalisation is the lack of a framework for
the user modelling. A recent review of generic user modelling systems [10] points
to the considerable work on such frameworks for server side personalisation.

PersonisJ is strongly in�uenced by the PersonisAD context-aware modelling
framework [1]. Distinctive features of this modelling framework are: the same
mechanisms model users as well as devices and places; it supports distributed
user modelling, particularly important for pervasive computing applications; it
provides scrutable modelling, meaning that it was designed, from its foundations
so that it could support a user's scrutiny of their user model and the way that it is
used. It is also able to perform lightweight user modelling, making it a promising
foundation for the phone where power consumption is a major concern.

We now describe key elements from PersonisAD that are important for Per-
sonisJ. PersonisAD represents a model as an hierarchy of contexts which can
contain components. It is based on the accretion/resolution representation. Ap-
plications interact with PersonisAD via three primitive operations. The �rst
looks up a Model for a particular person, device or place. The application can
then can use a tell operation to supply evidence, and an ask operation to request
the value of a component. This value is dynamically determined at the time of
the ask based on a two part process: an evidence �lter selects just the evidence
allowed for the application which did the ask ; a resolver which then interprets
the set of evidence. For example, a playlist application might use a resolver for a
person's favourite genre from a list of evidence that includes the songs they have
most recently played. Notably, �exibility and power in the reasoning comes from
the availability of a range of evidence �lters and resolvers. Some aspects of Per-
sonisAD are not suitable for use on a mobile device. Notably, it is a distributed
server application and always on so that clients can make TCP/IP connections.
While the essence of PersonisAD gives a conceptual foundation for this work,
the demands of creating a framework for client side personalisation on a mobile
phone have meant that we have created PersonisJ from scratch and indepen-
dently from it. Unlike PersonisAD, written in Python, PersonisJ is in Java to
run as a native application on Android.

3 Architecture and implementation

We now describe the PersonisJ framework. We begin with the conceptual level,
which has much in common with PersonisAD described above. Then we present
the high level architecture. The actual implementation was on the Open Hand-



PersonisService

PersonisJ 

API

ContentProvider

OtherApp

DatabasePersonisJ Core

Client Application

Fig. 1: PersonisJ Architecture

set Alliance's Android platform1. Pure implementation details are relegated to
footnotes.

At a conceptual level, PersonisJ represents user models as an hierarchical
structure of contexts, which can contain the components to be modelled. So,
for example, it may have a context for the user's visits to museums and within
this it may have components modelling the museums they prefer. Each compo-
nent accretes evidence. This is essentially a value with metadata indicating how
and when it was received. The metadata supports �exible evidence �ltering and
resolution and is a basis for supporting scrutability. The hierarchy of contexts
and components constitute an ontology and a sub-tree within the hierarchy is a
partial ontology.

Figure 1 shows the key modules of the PersonisJ architecture. The PersonisJ
API enables an arbitrary application to access the user model, albeit only after
the application has been granted read and/or write access to this model. The
PersonisJ Core provides the API, Database, ContentProvider and PersonisSer-
vice. We now describe how each of these have been designed to represent the
model and to secure access management.

The Database2 has a table for each context, component and piece of evidence
in the model. The Database is not accessible outside the PersonisJ Core. Instead,
access is mediated by the ContentProvider, which speci�es a unique �content
URI� for content it exposes to the client application.

When a client interacts with the model, via the PersonisJ API, it must use
a generic ContentResolver to act upon data, using content URIs. It is critical
that client applications cannot directly modify anything within the PersonisJ
database; for this reason, custom security permissions have been created for Per-
sonisJ (READ_CONTENT,WRITE_CONTENT, and TELL_PERMISSION).

1 Android, URL: http://www.android.com
2 SQLite, on the Android platform



These permissions are not intended to restrict unauthorised access; rather, it
forces applications to explicitly declare how they wish to interact with Person-
isJ. All applications intending to access the PersonisJ database must state the
permissions they require upfront3. To avoid direct third party application ac-
cess to the database, the WRITE_CONTENT permission has been given the
Android protection level of �signature�, meaning that only applications signed
with the same certi�cate as the PersonisJ code have direct write access to Per-
sonisJ content. This has the e�ect that only two of the three above de�ned per-
missions are publicly available; third-party applications intending to read from
the database use the READ_CONTENT permission (which corresponds to the
�ask� operation) and those intending to contribute to the database do so via the
PersonsisService module using the TELL_PERMISSION (corresponding to the
�tell� operation).

To allow client applications to interact with PersonisJ, the PersonisJ Core
provides the PersonisService in Figure 1. Because this resides within the same
application as the ContentProvider, it can freely write to the PersonisJ Database.

The PersonisService is also in charge of handling imports. It is not possi-
ble to expose the ability to create new contexts and components via the Con-
tentProvider without also exposing the ability to modify or delete them. This
problem is solved by allowing client applications to pass the PersonisService a
description of the partial ontology they require encoded in JavaScript Object
Notation (JSON). The PersonisService then creates any necessary contexts and
components.

PersonisService has one other responsibility. Any time it processes a `tell'
operation it will broadcast a message4 indicating which component was changed.
It will then walk back up the context tree to the root, broadcasting noti�cations
for each parent context in turn. This allows client applications to `listen in', and
discover if a particular component has received new evidence or, more generally,
if any component beneath a particular context has changed.

The ontology is normally speci�ed by applications, however location is so
fundamental that PersonisJ provides a prede�ned location monitor context in
the phone model, with components for the co-ordinates of each location value.
When turned on, this uses the phone's GPS to record any change in location
as Evidence in the PersonisJ model.5 PersonisJ also supplies a `default resolver'
that can resolve co-ordinate evidence into the phone's own framework.

PersonisJ provides an Application Programming Interface [API] that appli-
cations can use to interact with the system.

3 Security permissions are enforced by the Android OS, and the user is made aware
of the required permissions when installing the application.

4 an Intent in Android
5 The location monitor utilises the location API provided by Android. To conserve
battery power, it does not turn on the GPS of its own accord. Instead, it hooks in to
its operation whenever another program turns it on. A simple piece of UI allows the
location monitor to be enabled or disabled. While the GPS is disabled the location
monitor does not reside in memory and uses no additional battery.



The `ask' operation returns a single value for a component. An important as-
pect of PersonisJ is that each component may have a list of evidence. In order to
resolve multiple pieces of evidence into a single value the PersonisJ API provides
a Resolver interface, which interprets a set of evidence, returning a single value.
The API includes a selection of `default' resolvers for numerical values, booleans,
strings and dates. The actual resolution of values is executed within the client
application, enabling them to provide their own Resolver implementations.

The evidence passed to the Resolver can optionally be passed through an
EvidenceFilter, which chooses the pieces of evidence to be used by the Resolver.

PersonisJ Core has optimisations to ensure e�cient operation of resolvers
that require just the last piece of evidence, or the last few pieces of evidence, for
a component. These are very useful and commonly needed.

The API also exposes the ability to import and export partial ontologies.
It provides a method, which can nominate any context, to gain the exported
ontology. This operation occurs within the calling process. Optionally, a URL
can be provided to the export function. After encoding into JSON the generated
string will be passed to the PersonisService which, in a background thread,
will transmit the data to the speci�ed URL via an HTTP POST. The import
function works in a similar fashion, to upload the partial ontology de�ning a new
part of the model with PersonisService performing this operation as external
applications do not have write access to PersonisJ itself.

4 Evaluation

This section reports the two approaches we have used to validate the Person-
isJ framework. First, we used it to create a personalised client-side application
called MuseumGuide , which is able to notify a user of nearby museums and
then download content for any museum that the user is keen to visit. Then we
conducted scalability evaluations.

4.1 MuseumGuide application

Consider the following scenario:
Alice and Bob, with their young family, are on a driving holiday in Sydney.

Their phone has a model of the family's entertainment preferences including:
low cost; suitable for children; kids are interested in ancient Egypt. The Muse-
umGuide , running on Alice's phone and aware of their location, sends an alert
that they are near the Nicholson Museum. They decide to go to the museum and
on arrival, download a personalised museum tour, based on a detailed model of
the family's interests.

We now describe our implementation of MuseumGuide , making use of the
PersonisJ framework to model a family's entertainment interests, as outlined in
the scenario, and their more detailed interest model.

Figure 2 shows the MuseumGuide architecture, including the PersonsisJ API
module described earlier on (see Figure 1), providing the application with access



PersonisJ 

API

LocationListener

MuseumService

Museum

Object Model

ArticleView

TourView

User Interface

PersonalisationService

Personalisation 

Layer

ContentManager

Fig. 2: MuseumGuide architecture

to the PersonisJ database. It operates as a client-side application, and like other
Android applications requires the user to con�rm when they are installing the
application that they are happy with granting it the requested permissions, in
this case, access to the Internet, access to the PersonisJ ask and tell operators,
as well as several other permissions. MuseumGuide uses a BroadcastReceiver,
named LocationListener, to listen for component changes broadcast by Per-
sonisJ. If the changed component is the Location component the alert is passed to
MuseumService, as shown in the �gure. This compares the new location against
a stored list of museums. It sends a noti�cation as shown on the left in Figure 3.
When viewed it starts an Activity that checks to see if there is content that can
be downloaded (or updated) for the museum in question. If so, a prompt is dis-
played asking the user to con�rm whether it should go ahead with the download
(middle of Fig. 3).

The content is downloaded from a URL that is generated based upon the
name of the museum. Once loaded, the background service invokes the ContentManager
which imports it to MuseumGuide and then sends a second noti�cation (right
screen in Figure 3). Responding to this noti�cation brings MuseumGuide into
the foreground.

At this point the content is ready for viewing. A PersonalisationService is
situated, architecturally, between the ContentProvider and its UI. This service is
responsible for personalising the content before it is displayed. Figure ?? shows
one such personalised article. In this example, text content suitable for a young
child was chosen for display.

We have created a BroadcastReceiver that receives broadcasts when any
component changes. This ensures MuseumGuide is noti�ed anytime the location
changes, to compare it against the locations of museums.



Fig. 3: MuseumGuide interface

At this point MuseumGuide checks to see if content is available for the mu-
seum and, if so, whether it has already been downloaded and whether it is up
to date. If not, the program will prompt to fetch the content, as in Figure ??.
We used content for the Nicholson Museum, located on the University of Sydney
campus, taken from an existing museum guide [6]. Now that the content has
been imported it can be displayed.

The PersonalisationService exists as a separate Service to enforce a sepa-
ration between the content, the user-interface and the personalisation of the
content. The service takes a museum and article identi�er as input and returns
personalised output, based on a simple personalisation algorithm based on the
age of the user.

Based on the above description of the implemented application, we have
demonstrated that PersonisJ allows applications to register for updates in a
manner that is no more complicated than requesting an update from existing
Android system services. Once the logic for resolving a value from evidence has
been encapsulated within a Resolver class it requires only a single call to ask in
order to retrieve it.

We can see that PersonisJ makes it possible to create a context-aware appli-
cation with only a few calls to a high-level API. We note that obtaining location
updates from Android directly requires slightly less code. However, PersonisJ
provides a higher level of abstraction.

4.2 Scalability evaluation

Before beginning our evaluation of PersonisJ we note that the DalvikVM6 does
not provide any `Just in Time' [JIT] compilation. This has three important
consequences. Firstly, it means managed code will always run slower on Android
than its native equivalent. Secondly, it means that method level optimisations

6 the Java Virtual Machine used in Android



Fig. 4: personalised article

are important, as one cannot rely on minor ine�ciencies being `optimised away'.
Finally, the lack of JIT compilation means we can be relatively naive about our
performance testing, knowing that the code we write is, more or less, the code
that Android executes.

Performance was measured using the pro�ler built into the Android frame-
work, which has a resolution of micro seconds. The results are shown in Table
1. The critical column is the �nal column which shows the relative performance
for the tested actions. This was calculated as the ratios of the average time per
call normalised to one, then rounded to the nearest ten. The `time' and `average
time' columns were included for completeness, but should not be relied upon as
a measure of real-world performance.

Tests 1 to 4 involve actions selected from the sample actions in Table 1.
This gives a baseline for PersonisJ performance against some simple operations.
Tests 5, 6 and 7 re�ect some basic PersonisJ API operations. Test 5 is the tell
operation. We would expect it to be a relatively quick API call as it does not do
much work itself, but rather encapsulates a call through to the PersonisService
class in the core framework. Test 6 is the corresponding ask operation. Test 7 is
an example of an API call that would be used to drill down through an ontology.
Finally, Test 8 retrieves the same information from the PersonisJ database as
Test 7, but does so using a ContentProvider directly and is optimised to use only
one query instead of two.

These results indicate that PersonisJ's fastest operation is clearly the tell

operation. This is expected, as a tell operation is asynchronous. The ask op-



Table 1: Performance Tests: The result of 200 calls to various Android and PersonisJ
methods, pro�led using `traceview'. Results are sorted by relative performance. An
asterisk * before the test number indicates a test involving PersonisJ

Test # Time (ms) Time/Call Relative
Description Performance

String.length() 1 7.606 0.038 1
HashMapIterator.next() 2 70.822 0.354 10
HashMap.put() 3 142.474 0.712 20
PersonisContext.tell() *5 5763.410 28.82 760
LayoutIn�ator.in�ate() 4 13904.226 69.521 1830
`Raw' context query *8 14719.000 73.595 1930
PersonisContext.ask() *6 24472.835 122.356 3220
PersonisContext.getChildContext() *7 28371.960 141.860 3730

eration, in contrast, is a lot heavier and can be expected to di�er signi�cantly
based on the supplied parameters. The ask operation tested in Test 6 was as
lightweight as possible. Only the latest piece of evidence was examined and a
default String resolver was used. The String resolver performs no additional
computation, as all evidence is stored internally as a String. Even so, this simple
ask took approximately three times longer than a tell. Test 7 is an example of
a fairly common class of method. The ability to retrieve a model, context and
Component by name is part of the required setup any client application must
perform before it can even start to call ask or tell. However, once acquired,
these methods do not usually need to be called again until the next time the
application is killed and then relaunched. Test 8 acquires the same data as Test
7, but does so using only a single query. Its performance is roughly half that of
Test 7. From this, we can determine that when only a few columns are involved
it is much more e�cient to return all columns in the initial query. This translates
into an easy optimisation that can be applied to all PersonisJ calls that require
ContentResolver queries.

We can also see from the results that the PersonisJ operations are the same
order of magnitude as in�ating a trivial user interface, with just one button,
from XML (Test 4). Any user interface of practical use would far take longer,
We can see that an ask on the model (test 6) takes of the order of 0.1 seconds.
We can therefore conclude that acquiring complex information from PersonisJ
would have not add a noticeable delay to the loading of a typical interface screen.

The PersonisJ API takes up 44.7kb when converted to dex format. This
further compresses to 20.414kb in a .jar �le. The PersonisJ application is 37.24kb
as an APK package. It takes up 108kb of space on the phone when uncompressed.
These sizes are negligible when compared to most Android applications. The
PersonisJ Core Framework has essentially no UI and no other packaged resources,
such as images. This makes it smaller, when �rst installed, than all but the
simplest of applications. However, PersonisJ does create a database which will
grow continuously over time.



The data requirements of PersonisJ are not dictated by PersonisJ itself, but
rather the client applications. A full analysis of disk space requirements is there-
fore neither possible nor particularly helpful. An empty PersonisJ database is
10KB (10240 bytes).

In summary, the time performance of PersonisJ is adequate for the tasks re-
quired of it. Simple operations and resolvers that do not require much evidence
are fast enough to be performed in the main UI thread without a�ecting appli-
cation performance. More complex resolvers and contextual reasoning should be
performed in a background thread, but are unlikely to take longer to run than
setting up a typical UI screen. With respect to space performance, the size of the
PersonisJ API modest. The PersonisJ database, however, could grow too large
over a period of only a few months. Future versions of PersonisJ will address this
with options to move the database to other storage media, pruning old evidence,
or backing up old data to secure, personal storage over a network.

5 Conclusions

The goal of our design for the PersonisJ was to explore how to design a person-
alisaton framework that could support client-side personalisation on a mobile
phone. This was motivated by two potential bene�ts: �rst, this enables the phone
to deliver a personalised service even when the phone is not connected to a data
network; and second, it stores the user model on a device that is controlled by
the user.

With the user model restricted to the mobile phone, the issue of privacy
is a�ected by the e�ectiveness of the security. Our description of the PersonisJ
architecture included the careful design to address security issues, with PersonisJ
mediating all accesses on the model. Descriptions of the actual implementation
in [7] deal with these matters in detail. There is another critical element for the
security in terms of the behaviour of the applications that a user loads onto their
phone. Our MuseumGuide application, made use of a security framework [16]
which enables the user control what such an application is permitted to do.

Client-side personalisation provides an important foundation for life-long user
modelling, in which the user is able to create, edit, reuse, and extend their user
model throughout their digital life experiences. We have described PersonisJ,
a user modelling framework that can support client-side personalisation on the
Android phone platform. We have reported evaluations of PersonisJ at two lev-
els: in the MuseumGuide demonstrator application that delivers a personalised
museum tour based on client-side personalisation; in evaluations of its scala-
bility. Contributions of this paper are the description of the architecture, the
implementation, and the evaluation of a user modelling framework for client-
side personalisation on mobile phones.

References

1. Mark Assad, David Carmichael, Judy Kay, and Bob Kummerfeld. PersonisAD:
distributed, active, scrutable model framework for Context-Aware services. In



Pervasive Computing, pages 55�72. 2007.
2. Mark Bilandzic, Marcus Foth, and Alexander De Luca. City�ocks: designing social

navigation for urban mobile information systems. In DIS '08: Proceedings of the

7th ACM conference on Designing interactive systems, pages 174�183, New York,
NY, USA, 2008. ACM.

3. Guanling Chen and David Kotz. A survey of Context-Aware mobile computing
research. Technical report, Dartmouth College, 2000.

4. Karen Church and Barry Smyth. Understanding the intent behind mobile infor-
mation needs. In Proceedings of the 13th international conference on Intelligent

user interfaces, pages 247�256, Sanibel Island, Florida, USA, 2008. ACM.
5. Karen Church and Barry Smyth. Who, what, where & when: a new approach to

mobile search. In Proceedings of the 13th international conference on Intelligent

user interfaces, pages 309�312, Gran Canaria, Spain, 2008. ACM.
6. Marek Czarkowski. A Scrutable Adaptive Hypertext. PhD, University of Sydney,

March 2006.
7. Simon Gerber. Personisj: A platform for context-aware, client-side, mobile person-

alisation, 2009.
8. A. Goy, L. Ardissono, and G. Petrone. Personalization in e-commerce applications.

pages 485�520, 2007.
9. J. Kjeldskov and J. Paay. Public Pervasive Computing: Making the Invisible Vis-

ible. Computer, 39(9):60, 2006.
10. A Kobsa. Generic User Modeling Systems. pages 136�154, 2007.
11. A Kruger, J Baus, D Heckmann, M Kruppa, and R Wasinger. Adaptive Mobile

Guides. pages 521�549, 2007.
12. Antonio Krüger, Jörg Baus, Dominik Heckmann, Michael Kruppa, and Rainer

Wasinger. Adaptive Mobile Guides. In Peter Brusilovsky, Alfred Kobsa, and Wolf-
gang Nejdl, editors, Chapter in: The Adaptive Web: Methods and Strategies of Web

Personalization, pages 521�549. Springer, Berlin, Heidelberg, New York, 2007.
13. Stan Kurkovsky and Karthik Harihar. Using ubiquitous computing in interactive

mobile marketing. Personal Ubiquitous Comput., 10(4):227�240, 2006.
14. Jun Li, Ismail Ari, Jhilmil Jain, Alan H. Karp, and Mohamed Dekhil. Mobile

in-store personalized services. In ICWS '09: Proceedings of the 2009 IEEE Inter-

national Conference on Web Services, pages 727�734, Washington, DC, USA, 2009.
IEEE Computer Society.

15. Stina Nylander, Teres Lundquist, and Andreas Brannstrom. At home and with
computer access: why and where people use cell phones to access the internet. In
Proceedings of the 27th international conference on Human factors in computing

systems, pages 1639�1642, Boston, MA, USA, 2009. ACM.
16. Glen Alan Pink. Safe execution of dynamically loaded code on mobile devices,

2009.
17. O. Stock, M. Zancanaro, P. Busetta, C. Callaway, A. Kruger, M. Kruppa, T. Ku-

�ik, E. Not, and C. Rocchi. Adaptive, intelligent presentation of information for
the museum visitor in PEACH. User Modeling and User-Adapted Interaction,
17(3):257�304, 2007.


