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U N C E R T A I N T Y  R E A S O N I N G

C O N T E X T - A W A R E  C O M P U T I N G

Reasoning about
Uncertain Contexts in
Pervasive Computing
Environments

M
ark Weiser envisioned com-
puting environments that are
pervaded with so many com-
puting devices and sensors
that they seem to disappear

into the background, letting humans focus on
daily tasks rather than on underlying technolo-
gies.1 To enable this vision, we must transform
today’s “dumb,” context-insensitive, and iso-
lated machines into intelligent, programmable,
and context-aware clusters of machinery. How-
ever, unobtrusiveness and context awareness
involve capturing and making sense of impre-

cise and sometimes conflicting
data and uncertain physical
worlds.

Different types of entities
(software objects) in the envi-
ronment must be able to reason
about uncertainty. These in-
clude entities that sense uncer-

tain contexts, entities that infer other uncertain
contexts from these basic, sensed contexts, and
applications that adapt how they behave on the
basis of uncertain contexts. Having a common
model of uncertainty that is used by all entities
in the environment makes it easier for develop-
ers to build new services and applications in such
environments and to reuse various ways of han-
dling uncertainty. 

We developed an uncertainty model based on
a predicate representation of contexts and asso-
ciated confidence values. This model forms the
basis for reasoning about uncertainty using var-
ious mechanisms such as probabilistic logic, fuzzy
logic,2 and Bayesian networks. Each of these
mechanisms is useful in handling uncertainty in
different situations. We incorporated these mech-
anisms in Gaia,3 a distributed middleware sys-
tem that enables Active Spaces—physical spaces
enhanced with ubiquitous computing devices—
to form an interactive, programmable comput-
ing and communication system. This article
describes our model for uncertain contexts and
how Gaia handles uncertainty and various rea-
soning mechanisms.

One of our goals was to make it easy for
developers to integrate the use of uncertainty in
their programs. Gaia’s context infrastructure
provides services and libraries that help entities
acquire and reason about uncertain contextual
information. We define the structure and prop-
erties of context predicates in ontologies—this
makes it easier to develop programs that reason
about context.

Model for dealing with uncertainty
Our model represents any piece of information

whose truth value is potentially uncertain as a
predicate.

Context-aware systems can’t always identify the current context
precisely, so they need support for handling uncertainty. A prototype
pervasive computing infrastructure, Gaia, allows applications and
services to reason about uncertainty using mechanisms such as
probabilistic logic, fuzzy logic, and Bayesian networks. 
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The context predicate
We represent contexts as predicates,

following the convention that the pred-
icate’s name is the type of context being
described (such as location, tempera-
ture, or time).4,5 This gives us a simple,
uniform representation for different
kinds of contexts.  Many predicates are
defined to have arguments in a subject-
object format (ContextType(<Subject>, <Object>)
or in a subject-verb-object format 
(ContextType(<Subject>, <Verb>, <Object>). We
can also use relational operators such
as “=” and “<” as arguments. Example
context predicates include

location(jeff, in, room 3105)
activity(room 3102, meeting)
light(room 3220, dim)
office(chetan, room 3216)

Some contexts (such as office) are cer-
tain, whereas others (such as location and
activity) might be uncertain. The type of
context constrains the values that the
predicate arguments can take. For exam-
ple, if the type of context is location, the
first argument must be a person or
object, the second argument must be a
preposition or a verb such as entering, leav-
ing, or in, and the third argument must be
a location. We type-check the predicates
whenever they are used in rules or other
reasoning mechanisms.

Our context model gives a common
representation for context that all entities
in our environment use; the model itself
doesn’t describe what operations can be
performed on contexts. Instead, it provides
a common base on which various reason-
ing mechanisms can be specified to han-
dle context. Using predicates to represent
context information is helpful because
we can plug them directly into rules and
other reasoning and learning mechanisms
for handling uncertainty. Moreover, it lets
us describe context in a uniform way that
is independent of programming language,
operating system, or middleware.

Ontologies
We specify the predicates’ structures

and semantics in an ontology that
defines various context types as well as
the arguments that the predicates must
have.6 Each context type corresponds to
a class in the ontology. The ontology is
written in DAML+OIL,7 which is fast
becoming the de facto language of the
Semantic Web.8

We use the ontology to check predi-
cates’ validity. It also makes including

context predicates in rules easier
because we know the predicates’ struc-
ture and the kinds of values different
arguments can take. Using ontologies
also lets different ubiquitous comput-
ing environments interoperate, because
we can define translations between the
terms used in these environments’
ontologies. Ontological descriptions also
help reduce the possibility of one kind
of uncertainty: how different entities
will interpret the same piece of context
information.

Confidence values
We model uncertainty in our envi-

ronment by attaching a confidence
value between 0 and 1 to predicates.
This value measures the probability (in
the case of probabilistic approaches) or
the membership value (in the case of
fuzzy logic2) of the event corresponding
to the context predicate being true. For
example, prob(location(carol, in, room 3233)) =
0.5 means that the probability that
Carol is in Room 3233 is 0.5. Gaia uses
these confidence values in various
ways.

Reasoning using probabilistic and
fuzzy logic

Our use of probabilistic logic is based
on earlier work.9 This logic lets us make
statements such as “the probability of E
is less than 1/3” and “the probability of
E is at least twice the probability of F,”
where E and F are arbitrary events. The
logic has a complete axiomatization, and
the complexity of deciding satisfiability
in it is no worse than that of proposi-
tional logic.

Probabilistic logic lets us write rules
that reason about events’ probabilities
in terms of the probabilities of other
related events. For writing rules in prob-
abilistic logic and performing reasoning,
we use XSB (http://xsb.sourceforge.net),
a kind of Prolog that uses tabling and
indexing to improve performance. Besides
standard Prolog, XSB also allows pro-
gramming in HiLog.10 Because HiLog
has a higher-order syntax, it lets predi-
cates appear as arguments of other pred-
icates. This allows unification on the
predicate symbols themselves as well as
on their arguments. However, the seman-
tics of HiLog is first-order and has a
sound and complete proof procedure. We
need such higher-order logic syntax to
write rules about the probabilities of con-
text predicates. An example rule (written
in XSB) is

prob(X, Y, union, P) :- 
prob(X, Q), prob(Y, R), disjoint(X, Y), (P is Q + R).

This rule essentially says that Pr(X ∪Y) = Pr(X)
+ Pr(Y) if X and Y are disjoint events—that
is, they never occur together. X and Y can
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be context predicates. For example, X
could be location(Bob, in, Room 2401) and Y
could be location(Bob, in, Room 3234). X and Y
are disjoint events, since Bob can’t be in
two different locations at the same time.

Fuzzy logic is somewhat similar to
probabilistic logic. In fuzzy logic, confi-
dence values represent degrees of mem-
bership rather than probability. Fuzzy
logic is useful in capturing and repre-
senting imprecise notions such as “tall,”
“trustworthy,” and “confidence” and rea-
soning about them. We base this model
on the fuzzy predicate logic developed
by Petr Hajek11 and adapt it to perva-
sive computing environments. We can
thus write rules involving various con-
text predicates and then reason on the
basis of these rules.

Bayesian networks
Bayesian networks are directed acyclic

graphs, where the nodes are random vari-
ables representing various events and the
arcs between nodes represent causal rela-
tionships. In our model, each value that
a variable can take corresponds to a cer-
tain context predicate. To specify a
Bayesian network’s probability distribu-
tion, you give the prior probabilities of
all root nodes (nodes with no predeces-
sors) and the conditional probabilities of

all nonroot nodes (given all possible com-
binations of their direct predecessors).

Figure 1 shows an example of a
Bayesian network that infers the activ-
ity taking place in a room. Take the
Activity node at the root of the network,
for instance. The random variable activ-
ity can take values such as “meeting,”
“presentation,” “idle,” and so on, with
different probabilities. Assuming that
we’ve trained the network for Room
2401, these values correspond to the
context predicates activity(room 2401, meeting),
activity(room 2401, presentation),  activity(room 2401,
idle), and so on. These context predicates
have different probability values based
on what the network deduces.

Bayesian networks are a powerful way
of handling uncertainty, especially when
there are causal relationships between
various events. They are useful for per-
forming probabilistic sensor fusion and
higher-level context derivation. In our
environment, root nodes in the Bayesian
network represent the information to be
deduced, while the leaves are sensed
information. The intermediate nodes are
important subgoals that are helpful to
the deduction process.

Context infrastructure
In Gaia, our prototype pervasive com-

puting infrastructure, different entities
are aware of their context and adapt their
behavior to it.4 The infrastructure pro-
vides support for gathering context infor-
mation from sensors and delivering ap-
propriate context information to entities.
It also lets entities infer higher-level con-
texts from low-level sensed contexts. Dif-
ferent kinds of entities are involved in
Gaia’s context infrastructure (see Figure
2). All parts of the infrastructure have
support for handling uncertain contexts:

• Context Providers are sensors or
other data sources of context infor-
mation. They allow other agents (or
Context Consumers) to query them
for context information. Some Con-
text Providers also have an event
channel in which they regularly send
context events. Thus, other agents
can either query a Provider or listen
on the event channel to get context
information. Context Providers can
associate a probability measure with
the context information they pro-
vide, if the information is uncertain.
They get information on the seman-
tics of the context they provide (that
is, whether it’s certain or not) and the
context predicates’ structure from
the ontologies.

• Context Synthesizers get sensed con-
texts from various Context Providers,
deduce higher-level or abstract con-
texts from these simple sensed con-
texts, and then provide these deduced
contexts to other agents. For example,
we have a Context Synthesizer that
infers the activity occurring in our
smart room based on information
such as the number of people in the
room and the applications that are
running. Context Synthesizers also
associate a probability measure with
the context information they provide,
if the information is uncertain.

• Context Consumers are entities (con-
text-aware applications) that get dif-
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ferent types of contexts from Context
Providers or Context Synthesizers.
They reason about the current context
and adapt the way they behave accord-
ing to it. They can use various mecha-
nisms for reasoning about context,
such as rules written in different types
of logic and learning mechanisms such
as Bayesian learning. These reasoning
mechanisms can take into account any
uncertainties in context information.

• Context Provider Lookup Service
enables Context Providers to adver-
tise what they offer and agents to find
appropriate Context Providers.

• Context History Service lets agents
query for past contexts, which are
logged in a database.

• Ontology Server maintains the ontolo-
gies that describe different types of
contextual information.

Each Active Space has one Context Pro-
vider Lookup Service, one Context His-
tory Service, and one Ontology Server.

Structure of a reasoning entity
Figure 3 illustrates the structure of an

entity (application, device, or service)
that uses reasoning to deal with uncer-
tain contexts. Each entity has a knowl-
edge base associated with it, in which rel-
evant facts and rules are asserted. The
KB contains facts about the current con-
text in the form of context predicates as
well as information from other services,
such as authentication and access con-
trol services. When a Context Provider
or other service detects a change in the
current context, it sends an event on its
event channel. The KB listens to various
event channels and updates itself when a
change happens.

The common model for context helps
frame uniform, easy-to-use APIs for the

interactions between entities. Context
Providers, the KB, the Reasoning En-
gine, and the application or service use
the same predicate representation of
context. Applications and services rea-
son about facts in the KB using a par-
ticular reasoning mechanism (for exam-
ple, Bayesian inference or fuzzy logic).
They query the reasoning engine through
a fixed API to get information they need
to make decisions or to get inferred facts.
The use of a fixed interface between the
application or service and the reasoning
engine lets us plug in different reasoning
engines for reasoning about uncertain
contexts. Thus, adding new reasoning
engines (say, based on neural networks)
in the future will be easy. 

One of the goals of our infrastruc-
ture was to let developers concentrate
on developing rules or networks for
reasoning and not be burdened with
the low-level details involved in getting
entities to operate in the environment.
Developers who want to use reasoning
in their entities specify the kinds of
facts the KB must contain (that is,
which context predicates are required
by the reasoning engine to perform the

inferencing). The Context Infrastruc-
ture automatically takes care of updat-
ing the KB with the current context
information by making it listen to the
appropriate event channels. The devel-
oper also specifies the reasoning mech-
anism in the form of rules or a Bayesian
network. 

Support for probabilistic
and fuzzy logic

Some entities in Gaia use probabilis-
tic or fuzzy logic in the form of rules
written in Prolog or HiLog. The infra-
structure provides easy mechanisms for
developers to specify inference rules for
these entities. Our Ontology Explorer
browser lets developers find definitions
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of various terms and contextual infor-
mation as well as relationships between
terms; they can also browse the ontolo-
gies to get the terminology used in the
environment. We have also developed a
GUI that lets developers construct rules
in probabilistic and fuzzy logic. This
GUI lets developers construct context
predicates (based on their definitions in
the ontologies) and combine them in dif-
ferent rules.

Support for Bayesian networks
Using Microsoft’s Belief Network

(MSBN) software, Gaia developers can
create Bayesian networks representing
causal relationships between events12

and then enter prior probability distri-

butions on the nodes. The developer
associates each network node with a
specific context predicate. Construct-
ing a Bayesian network involves iden-
tifying causal dependencies between dif-
ferent events, which might not be an
easy task. In our environment, devel-
opers browse the ontology of context
information to know what contexts are
available and how they might relate to
one another.

The developer or a system adminis-
trator trains the networks on real data
to get more accurate probability distrib-
utions for the various nodes. Then,
applications, services, or end users can
use it to infer the probabilities of context
conditions and other events. The Con-
text Infrastructure supplies the current
context as evidence to the network. On
the basis of this evidence, the network
can infer the probability distributions of

the network’s root nodes. MSBN uses
clique tree propagation methods to cal-
culate probabilities exactly. This infer-
ence method, however, could take expo-
nential time and wouldn’t work for very
large networks. So far, though, the kinds
of problems we’ve used Bayesian infer-
encing for involve fairly small networks
(less than 50 nodes), and we haven’t
encountered any performance problems.
However, for larger networks, we would
have to employ other approximate infer-
ence strategies.

Examples
Gaia handles uncertainty in three

broad areas: sensing context informa-
tion, inferring context information, and

enabling applications to use uncertain
context information. (See the “Related
Work” sidebar for information on oth-
ers’ uncertainty research.)

Uncertainty in sensing context
Two examples of Context Providers

that provide uncertain contexts are radio
frequency identification badges for loca-
tion detection and various authentica-
tion devices.

RFID badges. Many location-sensing sys-
tems cannot resolve an object’s location
accurately, but only do so within some
tolerance. In our environment, we detect
people’s locations using RF-based badges.
Badge detectors are placed in different
parts of the building.

We use badges to try to determine if a
certain person is in a certain room. Two
factors contribute to uncertainty in a per-

son’s location. One factor is the uncer-
tainty of whether the badge is actually
in the room. Because a badge detector’s
range can fall outside the room it’s mon-
itoring, the detector might sense people
as they move outside (for example,
through a nearby corridor). Thus, the
probability that the badge is actually in
the room is the area of the room within
the badge detector’s circle of detection
divided by the area of the circle of detec-
tion. If there are other badge detectors
nearby, then one or more of them might
sense the person’s badge, and we can cal-
culate the probability that the badge is
actually in the room using a sensor-
fusion procedure. Similar probability
measures can be worked out if 802.11-
based access points are used to sense
people’s locations.

Another factor that causes uncer-
tainty in using badges for location track-
ing is the fact that the person associated
with the badge might not be carrying it.
The person might have left the badge on
a desk, or someone might have stolen it.
Quantifying this uncertainty and asso-
ciating it with a probability value is
more difficult. Such behavior varies
from person to person and is difficult to
generalize to all people.

To partially address this problem, in
our system, we assign a probability
value to the event of a person actually
having the badge in hand. This proba-
bility value is not entirely ad hoc; it’s an
intuitive sense of how reliable the loca-
tion-sensing device is. For example, the
value of this probability is less for a
badge than it is for a smart ring because,
intuitively, a ring is less likely to be mis-
placed or stolen. However, such a solu-
tion isn’t entirely satisfactory, and we are
looking at other ways of dealing with
such immeasurable factors.

More generally, any location Context
Provider (associated with a badge, ring,
fingerprint recognizer, or similar device)
uses probabilistic logic to evaluate the
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probability of a person being in a certain
room. The main inference rule is

Prob (location(X, in, Y)) = 
Prob (device associated with person is in Y)
× Prob (device is actually with person X)

There are other issues that come into
play as well in determining whether the
badge is actually in the room, such as
people’s behavior and the typical amount
of time people spend in the room. Our
current algorithm serves only as a first
level of approximation in determining
location on the basis of probabilistic
logic; more complex algorithms could
consider other factors. For example,
inferring that a user has forgotten his
badge is possible using other informa-
tion such as his login into a machine that
is situated away from his badge. Also,
the time elapsed since the last detection
of a badge is a useful indicator of the cer-

tainty that the user (and his badge) is still
in the room. We plan on adding rules
that incorporate these conditions as well.

Authentication devices. Various biomet-
ric authentication devices such as fin-
gerprint readers, face and voice recogni-
tion software, and so on give a measure
of confidence while recognizing users.
They also use probabilistic logic to eval-
uate the degree of confidence in authen-
tication. These devices typically use pat-
tern-matching algorithms (such as neural
networks) to compare the sample fin-
gerprint or face with a database of stored
fingerprints or faces. The extent of the
match gives a measure of the device’s
confidence that the person has been cor-
rectly identified. Like active badges,
authentication devices also have rules to
evaluate the probability that people are
indeed who they claim to be. Authenti-
cation devices then associate this proba-

bility with the authentication context
predicate they provide.

Inferred context
Gaia has various components that try

to infer higher-level context from basic,
sensed contexts. If the basic, sensed con-
texts are themselves uncertain, then the
inferred contexts will also be uncertain.
We need to somehow combine the prob-
ability or confidence measures from dif-
ferent sensors to get a measure of uncer-
tainty for the inferred combined context.
We can use probabilistic logic or Bayesian
approaches to do this.

Authentication. Users have a variety of
devices in pervasive computing environ-
ments to identify themselves to the sys-
tem, including wearable devices, voice
and face recognition, badges containing
identification information, fingerprint
identification, and retinal scans. The
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suggest that ambiguous information can be resolved by a media-

tion process involving the user.1 However, considering the poten-

tially large quantities of context information involved in pervasive

computing environments and the rapid rate at which context can

change, this approach places an unreasonable burden on the user.

Hui Lei and colleagues describe a context service that allows con-

text information to be associated with quality metrics, such as

freshness and confidence,2 but their model of context lacks for-

mality. Paul Castro and colleagues use Bayesian networks for sen-

sor fusion,3 but their work considers only location information.

Albrecht Schmidt and colleagues associate each of their context

values with a certainty measure that captures the likelihood that

the value accurately reflects reality.4 Philip Gray and Daniel Salber

include information quality as a type of meta-information in their

context model, and describe six quality attributes: coverage, res-

olution, accuracy, repeatability, frequency, and timeliness.5 How-

ever, they all do not specify ways of handling the uncertainty or

reasoning about it. The model described by Karen Henricksen and

colleagues6 supports quality by allowing associations between

objects to be annotated with a number of quality parameters,

which capture the dimensions of quality considered relevant to

that association. However, the model doesn’t give any way of

using these quality metrics in real-life situations.
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authentication process should let users
authenticate themselves to the system
using various means. At the same time,
authentication information from differ-
ent devices is associated with different
levels of confidence because some authen-
tication mechanisms (for example, bio-
metrics features and DNA samples) are
much stronger than others (such as pass-
words and badges). Also, depending on
the context, the level of confidence asso-
ciated with some mechanisms might
change. For example, if a system suspects
that someone’s password has been com-
promised, it might reduce the level of
confidence associated with passwords.

Intuitively, it’s also reasonable to
assume that the more devices the user
employs to authenticate himself or her-
self, the greater the system’s confidence
in that user’s identity. The authentication

service performs a kind of sensor fusion.
It collects authentication information
from the different devices and determines
the net confidence of authentication in
case the user uses more than one device
to authenticate himself. This net confi-
dence, expressed as a confidence value,
is then used in various access control deci-
sions. Once authentication is complete,
the authentication service asserts new
information about the authenticated
principals and the confidence values asso-
ciated with them, as well as additional
information.13 For example,

authenticatedUsing(bob, mechanism1)
authenticatedUsing(bob, mechanism2)
confidenceLevel(mechanism1, 0.6) 
confidenceLevel(mechanism2, 0.8)

possessRole(bob, grad student) 
possessRole(bob, teaching assistant)

The authentication service uses a sim-
ple rule to combine confidence values.
Let’s assume a principal tries to authen-
ticate herself using n different authenti-
cation methods, and all these attempts
were successful. If the confidence values
associated with these authentication
methods are V1, V2, … , Vn, then the net
confidence Vnet associated with this
authentication is given by the formula
(derived from probability theory)

Vnet = 1 – (1 − V1)(1 − V2) … (1 − Vn).

Access control policies use the confi-
dence values of authentication and the
role names associated with a principal,
as we illustrate later.

Room activity example. Figure 1 shows
a subset of the Bayesian network we use
to infer activity in our smart room. The
network consists of various nodes rep-
resenting basic context information
(whether a PDFViewer is running, the
light and sound levels, the number of
people). Some nodes represent the activ-
ity of a single user (such as the Presen-
ter node, which indicates if a person is
giving a presentation in the room).
Finally, an Activity node describes the
activity in the room as a “Presenta-
tion,” “Demo,” “Meeting,” “Seminar,”
“Idle,” and so on. On the basis of evi-
dence collected from various Context
Providers, the network assigns proba-
bilities to the different possible activi-
ties in the room.

We trained the network on data we
collected from the smart room. The
training process helped us assign proba-
bility distributions to the different nodes.
We can now use the network to deduce
activity in the room on the basis of
sensed contexts. At any point of time,
the context infrastructure obtains the
state of various leaf nodes. The Bayesian
inferencing algorithm then calculates the
conditional probability distribution of
the Activity node given the states of the
leaf nodes. 

We evaluated the accuracy of our
Bayesian network in deducing the cor-
rect activity in the room. In our test run,
we took 210 observations (one every
half hour, 30 per day for a week). In each
observation, the network assigned prob-
abilities to different activities (such as a
meeting or a presentation) on the basis of
the room’s context (such as the light sta-
tus or presence of people). We found that
the network assigned the highest proba-
bility to the actual activity in the room
in nearly 84 percent of the observations.
One possible reason why the network
performed well is that we used the smart
room in only a limited number of ways
that followed fairly learnable and dis-
tinct patterns, so the network could eas-
ily learn the activity patterns.

Applications’ use of uncertain
context information

Applications in Gaia use the proba-
bilities of various contexts to influence
their decisions and behaviors. The appli-
cations get context predicates and their
associated probabilities from Context
Providers and Context Synthesizers, and
they reason about the uncertain context
information using fuzzy logic or Bayesian
inferencing mechanisms. If they don’t
want to deal directly with the probabil-
ity distributions of different context
predicates, they can assume that the pred-
icate with the maximum probability is
true and the rest are false.
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Access control. Access control decisions
in Gaia use fuzzy reasoning. Access con-
trol policies for various applications and
services are based on linear inequalities
on the confidence values of context
information. Gaia grants access to a
resource to a particular principal if the
principal has been authenticated to a sat-
isfactory level and if the context has been
sensed with a certain degree of accuracy.
For example, the following is an access
control rule written in Prolog:

canAccess(P, display) :- 
confidenceLevel(authenticated(P), C), C > 0.7, 
Prob(activity(2401,cs 101 presentation), Y),

Y > 0.8, 
possessRole(P, presenter)

This example states that a principal P
may access the display if P has been
authenticated with a confidence value of
at least 0.7, the activity in the room is a
presentation with probability of at least
0.8, and P is the presenter for this pre-
sentation activity. The authenticated predi-
cate is asserted on the basis of informa-
tion from the Authentication Service,
and the activity predicate is obtained from
the Activity Context Provider (which
itself uses a Bayesian network to get the
probability associated with an activity).
The minimum probabilities are set on
the basis of how critical the resource is.
The Access Control service sets the role
information on the basis of what role the
user has chosen or what role the user’s
schedule or the system administrator has
assigned to the user. Using a logic-based
language gives us a powerful, expressive,
yet simplistic language for writing secu-
rity policies. Developers use our infra-
structure to write access control rules for
their applications and services and then
to deploy them in the environment.

Troubleshooting. We also use a Bayesian
network for troubleshooting the envi-
ronment. Given the presence of various

symptoms, the network infers the prob-
abilities of various Gaia services, appli-
cations, devices, or other resources hav-
ing failed. For example, if the smart
room doesn’t detect people’s presence
in the room, this implies that the Space
Repository (which maintains a data-
base describing the room’s current
state) or the Authentication Service
could have failed with certain condi-
tional probabilities. 

Figure 4 shows a subset of this net-
work. The network consists of nodes
such as EventManager and Authentica-
tionService that represent the state of dif-
ferent Gaia entities. Other nodes repre-
sent certain kinds of failures (or
symptoms of failures). For example, the
CanCreateEventChannel node repre-
sents whether or not creating an event
channel is possible. We trained the net-
work over a period of time using data
logged from the environment. We now
use it to determine which services or
applications to troubleshoot or restart
on the basis of observing certain symp-
toms. Again, we built and deployed this
network using the mechanisms our infra-
structure provides for creating and rea-
soning with Bayesian networks. We are
looking at enhancing the network by
using temporal information.

L
earning based on Bayesian net-
works and explicit rules written
in probabilistic or fuzzy logic
are useful in different scenarios.

Bayesian networks are useful for
learning the probability distributions of
events and enable reasoning about
causal relationships between observa-
tions and the system state. They, how-
ever, must be trained before they can be
used, but because they are flexible and
can be retrained easily, they can adapt to
changing circumstances. 

Probabilistic logic is useful when we
have precise knowledge of events’ prob-
abilities; fuzzy logic is useful when we
want to represent imprecise notions.
Both probabilistic and fuzzy logic are
useful in scenarios where getting data
to train a Bayesian network is difficult.
This is especially true in the area of
security. In our prototypical pervasive
computing environment, getting train-
ing data for authentication and access
control operations was difficult, mainly
because getting data implied attacking
the system in some manner and mea-
suring how often such attacks were suc-
cessful. Our context model provides a
common base for the different reason-
ing mechanisms, besides allowing new
reasoning mechanisms to be easily
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Figure 4. Bayesian network for trouble-
shooting in Gaia.



incorporated in the future. Our infra-
structure also provides support for
developers to incorporate the use of rea-
soning in the services and applications
they develop. In particular, many devel-
opers have used Gaia’s rule-creation GUI
to develop and deploy access control
rules based on fuzzy logic for their enti-
ties. The support our infrastructure pro-
vides for building, training, and deploy-
ing Bayesian networks has also allowed
us to rapidly incorporate Bayesian rea-
soning in many of our entities.

Reasoning about uncertainty has
helped make components in our perva-
sive computing environment more
robust and more capable of adapting to
changing dynamics. We envision several
enhancements to our infrastructure for
coping with and reasoning about uncer-
tainty. Different applications respond to
uncertain context information in differ-
ent ways. For example, highly critical
applications require context information
with a high level of confidence before
they can take action, whereas less criti-
cal applications can operate with less cer-
tain context information. We are study-
ing what levels of confidence in context
information are required by different
applications. An important aspect of
uncertainty is the freshness of context
information. We hope to quantify fresh-
ness and develop axioms or rules to deal
with it.

Another enhancement is the use of
plausibility measures14 in situations
where we can’t associate a specific num-
ber like a probability but where we
could say that one event is more or less
likely than another. While a probability
measure maps an event to a number
between 0 and 1, a plausibility measure
just associates an event with an element
in a partially ordered set. This would
enable us to express the fact that a fin-
gerprint sensor might more accurately
determine a person’s location than a
badge detector could. 

REFERENCES
1. M. Weiser, “The Computer for the Twenty-

First Century,” Scientific Am., vol. 265, no.
3, Sept. 1991, pp. 94–104.

2. L. Zadeh, “Fuzzy Sets as Basis for a Theory
of Possibility,” Fuzzy Sets and Systems, vol.
1, 1978, pp. 3–28.

3. M. Roman et al., “A Middleware Infra-
structure for Active Spaces,” IEEE Pervasive
Computing, vol. 1, no. 4, 2002, pp. 74–83.

4. A. Ranganathan and R.H. Campbell, “A
Middleware for Context-Aware Agents in
Ubiquitous Computing Environments,”
ACM/IFIP/USENIX Int’l Middleware
Conf., LNCS 2672, Springer-Verlag, 2003;
http://choices.cs.uiuc.edu/~ranganat/Pubs/
MiddlewareForContext-FinalVersion.pdf.

5. A. Ranganathan et al., “ConChat: A Con-
text-Aware Chat Program,” IEEE Perva-
sive Computing, vol. 1, no. 3, July–Sept.
2002, pp. 51–57. 

6. A. Dey, J. Manko., and G. Abowd, Dis-
tributed Mediation of Imperfectly Sensed
Context in Aware Environments, tech.
report GIT-GVU-00-14, Georgia Inst. of
Technology, 2000.

7. I. Horrocks, “DAML+OIL: A Description
Logic for the Semantic Web,” IEEE Bull.
Tech. Committee on Data Eng., 2002. vol.
25, no. 1, Mar. 2002, pp. 4–9.

8. P. Castro et al., “A Probabilistic Room Loca-
tion Service for Wireless Networked Envi-
ronments,” UbiComp 2001 Conf., LNCS
2201, Springer-Verlag, 2001, pp. 18–34.

9. J. Halpern, R. Fagin, and N. Megiddo, “A
Logic for Reasoning about Probabilities,”
Information and Computation, vol. 87,
nos. 1–2, 1990, pp. 78–128. 

10. W. Chen, M. Kifer, and D.S. Warren,
“HILOG: A Foundation for Higher-Order
Logic Programming,” J. Logic Program-
ming, vol. 15, no. 3, 1993, pp. 187–230.

11. P. Hajek, “Fuzzy Predicate Calculus and
Fuzzy Rules,”Fuzzy If-Then Rules in Com-
putational Intelligence, D.A. Ruan and E.E.
Kerre, eds., Kluwer Academic Publishers,
2000, pp. 27–35.

12. C.M. Kadie, D. Hovel, and E. Horvitz,
MSBNx: A Component-Centric Toolkit for
Modeling and Inference with Bayesian Net-
works, tech. report MSR-TR-2001-67,
Microsoft Research, 2001.

13. J. Al-Muhtadi et al.,  “Cerberus: A Context-
Aware Security Scheme for Smart Spaces,”
IEEE Int’l Conf. Pervasive Computing and
Communications (PerCom 2003), IEEE CS
Press, 2003.

14. J. Halpern and N. Friedman, “Plausibility
Measures: A User’s Guide,” Proc. 11th
Conf. Uncertainty in AI, Morgan Kauf-
mann, 1995, pp. 175–184.

For more information on this or any other comput-
ing topic, please visit our Digital Library at www.
computer.org/publications/dlib/.

70 PERVASIVEcomputing www.computer.org/pervasive

U N C E R T A I N T Y  R E A S O N I N G

the AUTHORS

Anand Ranganathan is a
doctoral candidate and
research assistant working on
the Gaia project in the Uni-
versity of Illinois at Urbana-
Champaign’s Department
of Computer Science. His
research interests include

context-aware computing, mobile computing,
the Semantic Web, and automated reasoning
and learning. He received his BTech in computer
science from the Indian Institute of Technology in
Madras. Contact him at 1330 SC, 201 N. Good-
win, Urbana, IL 61801; ranganat@uiuc.edu.

Jalal Al-Muhtadi is a doc-
toral candidate and research
assistant working on the
Gaia project at the University
of Illinois at Urbana-Cham-
paign, where he researches
middleware and infrastruc-
ture security and privacy

issues. He received his MS in computer science
from the University of Illinois at Urbana-Cham-
paign. Contact him at 1330 SC, 201 N. Good-
win, Urbana, IL 61801; almuhtad@cs.uiuc.edu.

Roy H. Campbell is a pro-
fessor of computer science
at the University of Illinois at
Urbana-Champaign. His
research interests include
operating systems, distrib-
uted multimedia, network
security, and ubiquitous

computing. He received his PhD in computing
from the University of Newcastle upon Tyne.
Contact him at 3122  SC, 201 N. Goodwin,
Urbana, IL 61801; rhc@uiuc.edu.


