APPLIED MECHANISM DESIGN FOR SOCIAL GOOD

JOHN P DICKERSON

Lecture #11 – 03/01/2018

CMSC828M
Tuesdays & Thursdays
9:30am – 10:45am
LET’S TALK ABOUT PROJECTS
THIS CLASS: MATCHING & NOT THE NRMP

(SEE: LECTURE #9 OF FALL 2016 BY CANDICE SCHUMANN)
OVERVIEW OF THIS LECTURE

Stable marriage problem
 • Bipartite, one vertex to one vertex

Stable roommates problem
 • Not bipartite, one vertex to one vertex

Hospitals/Residents problem
 • Bipartite, one vertex to many vertices
MATCHING WITHOUT INCENTIVES

Given a graph $G = (V, E)$, a matching is any set of pairwise non-adjacent edges

- No two edges share the same vertex
- Classical combinatorial optimization problem

Bipartite matching:

- Bipartite graph $G = (U, V, E)$
- Max cardinality/weight matching found easily – $O(VE)$ and better
 - E.g., through network flow, Hungarian algorithm, etc

Matching in general graphs:

- Also PTIME via Edmond’s algorithm – $O(V^2E)$ and better
STABLE MARRIAGE PROBLEM

Complete bipartite graph with equal sides:

- n men and n women (old school terminology 😞)

Each man has a strict, complete preference ordering over women, and vice versa

Want: a stable matching

Stable matching: No unmatched man and woman both prefer each other to their current spouses
Example Preference Profiles

<table>
<thead>
<tr>
<th></th>
<th>Diane</th>
<th>Emily</th>
<th>Fergie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradley</td>
<td>Emily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charles</td>
<td>Diane</td>
<td>Emily</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diane</th>
<th>Bradley</th>
<th>Albert</th>
<th>Charles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emily</td>
<td>Albert</td>
<td>Bradley</td>
<td>Charles</td>
</tr>
<tr>
<td>Fergie</td>
<td>Albert</td>
<td>Bradley</td>
<td>Charles</td>
</tr>
</tbody>
</table>
EXAMPLE MATCHING #1

<table>
<thead>
<tr>
<th></th>
<th>Albert</th>
<th>Diane</th>
<th>Emily</th>
<th>Fergie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert</td>
<td>Diane</td>
<td>Emily</td>
<td>Fergie</td>
<td></td>
</tr>
<tr>
<td>Bradley</td>
<td>Emily</td>
<td>Diane</td>
<td>Fergie</td>
<td></td>
</tr>
<tr>
<td>Charles</td>
<td>Diane</td>
<td>Emily</td>
<td>Fergie</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Diane</th>
<th>Bradley</th>
<th>Albert</th>
<th>Charles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diane</td>
<td>Bradley</td>
<td>Albert</td>
<td>Charles</td>
<td></td>
</tr>
<tr>
<td>Emily</td>
<td>Albert</td>
<td>Bradley</td>
<td>Charles</td>
<td></td>
</tr>
<tr>
<td>Fergie</td>
<td>Albert</td>
<td>Bradley</td>
<td>Charles</td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLE MATCHING #1

<table>
<thead>
<tr>
<th></th>
<th>Albert</th>
<th>Diane</th>
<th>Emily</th>
<th>Fergie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bradley</td>
<td>Emily</td>
<td>Diane</td>
<td>Fergie</td>
<td></td>
</tr>
<tr>
<td>Charles</td>
<td>Diane</td>
<td>Emily</td>
<td>Fergie</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Diane</th>
<th>Bradley</th>
<th>Albert</th>
<th>Charles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emily</td>
<td>Albert</td>
<td>Bradley</td>
<td>Charles</td>
<td></td>
</tr>
<tr>
<td>Fergie</td>
<td>Albert</td>
<td>Bradley</td>
<td>Charles</td>
<td></td>
</tr>
</tbody>
</table>

No.
Albert and Emily form a **blocking pair.**
EXAMPLE MATCHING #2

<table>
<thead>
<tr>
<th></th>
<th>Albert</th>
<th>Diane</th>
<th>Emily</th>
<th>Fergie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bradley</td>
<td>Emily</td>
<td>Diane</td>
<td>Fergie</td>
<td></td>
</tr>
<tr>
<td>Charles</td>
<td>Diane</td>
<td>Emily</td>
<td>Fergie</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Diane</th>
<th>Bradley</th>
<th>Albert</th>
<th>Charles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emily</td>
<td>Albert</td>
<td>Bradley</td>
<td>Charles</td>
<td></td>
</tr>
<tr>
<td>Fergie</td>
<td>Albert</td>
<td>Bradley</td>
<td>Charles</td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLE MATCHING #2

<table>
<thead>
<tr>
<th></th>
<th>Diane</th>
<th>Emily</th>
<th>Fergie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert</td>
<td>Diane</td>
<td>Emily</td>
<td>Fergie</td>
</tr>
<tr>
<td>Bradley</td>
<td>Emily</td>
<td>Diane</td>
<td>Fergie</td>
</tr>
<tr>
<td>Charles</td>
<td>Diane</td>
<td>Emily</td>
<td>Fergie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Bradley</th>
<th>Albert</th>
<th>Charles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diane</td>
<td>Bradley</td>
<td>Albert</td>
<td>Charles</td>
</tr>
<tr>
<td>Emily</td>
<td>Albert</td>
<td>Bradley</td>
<td>Charles</td>
</tr>
<tr>
<td>Fergie</td>
<td>Albert</td>
<td>Bradley</td>
<td>Charles</td>
</tr>
</tbody>
</table>

Yes!
(Fergie and Charles are unhappy, but helpless.)
SOME QUESTIONS

Does a stable solution to the marriage problem always exist?
Can we compute such a solution efficiently?
Can we compute the best stable solution efficiently?
GALE-SHAPLEY [1962]

1. Everyone is unmatched

2. While some man m is unmatched:
 - $w := m$’s most-preferred woman to whom he has not proposed yet
 - If w is also unmatched:
 - w and m are engaged
 - Else if w prefers m to her current match $m’$
 - w and m are engaged, $m’$ is unmatched
 - Else: w rejects m

3. Return matched pairs
Claim
GS terminates in polynomial time (at most n^2 iterations of the outer loop)

Proof:
• Each iteration, one man proposes to someone to whom he has never proposed before
• n men, n women $\Rightarrow n \times n$ possible events

(Can tighten a bit to $n(n - 1) + 1$ iterations.)
Claim
GS results in a perfect matching

Proof by contradiction:
• Suppose BWOC that \(m \) is unmatched at termination
• \(n \) men, \(n \) women \(\rightarrow \) \(w \) is unmatched, too
• Once a woman is matched, she is never unmatched; she only swaps partners. Thus, nobody proposed to \(w \)
• \(m \) proposed to everyone (by def. of GS): \(>> \)
Claim
GS results in a stable matching (i.e., there are no blocking pairs)

Proof by contradiction (1):
- Assume m and w form a blocking pair

Case #1: m never proposed to w
- GS: men propose in order of preferences
- m prefers current partner $w' > w$
- $\rightarrow m$ and w are not blocking
Claim
GS results in a stable matching (i.e., there are no blocking pairs)

Proof by contradiction (2):
Case #2: m proposed to w
• w rejected m at some point
• GS: women only reject for better partners
• w prefers current partner $m' > m$
• $\rightarrow m$ and w are not blocking

Case #1 and #2 exhaust space. $><$
RECAP: SOME QUESTIONS

Does a stable solution to the marriage problem always exist?

Can we compute such a solution efficiently?

Can we compute the best stable solution efficiently?

We’ll look at a specific notion of “the best” – optimality with respect to one side of the market
(WO)MAN
OPTIMALITY/PESSIMALITY

Let S be the set of stable matchings.

m is a valid partner of w if there exists some stable matching S in S where they are paired.

A matching is man optimal (resp. woman optimal) if each man (resp. woman) receives their best valid partner.

- Is this a perfect matching? Stable?

A matching is man pessimal (resp. woman pessimal) if each man (resp. woman) receives their worst valid partner.
Claim
GS – with the man proposing – results in a man-optimal matching

Proof by contradiction (1):
• Men propose in order → at least one man was rejected by a valid partner
• Let m and w be the first such reject in S
• This happens because w chose some $m' > m$
• Let S' be a stable matching with m, w paired
 (S' exists by def. of valid)
Claim
GS – with the man proposing – results in a man-optimal matching

Proof by contradiction (2):
• Let \(w' \) be partner of \(m' \) in \(S' \)
• \(m' \) was not rejected by valid woman in \(S \) before \(m \) was rejected by \(w \) (by assump.)
 \[\rightarrow m' \text{ prefers } w \text{ to } w' \]
• Know \(w \) prefers \(m' \) over \(m \), her partner in \(S' \)
 \[\rightarrow m' \text{ and } w \text{ form a blocking pair in } S' \]
RECAP: SOME QUESTIONS

Does a stable solution to the marriage problem always exist?

Can we compute such a solution efficiently?

Can we compute the best stable solution efficiently?

For one side of the market. What about the other side?
Claim
GS – with the man proposing – results in a woman-pessimal matching

Proof by contradiction:
• \(m \) and \(w \) matched in \(S \), \(m \) is not worst valid
• \(\Rightarrow \) exists stable \(S' \) with \(w \) paired to \(m' < m \)
• Let \(w' \) be partner of \(m \) in \(S' \)
• \(m \) prefers to \(w \) to \(w' \) (by man-optimality)
• \(\Rightarrow m \) and \(w \) form blocking pair in \(S' \) \(\gg \)
INCENTIVE ISSUES

Can either side benefit by misreporting?

• (Slight extension for rest of talk: participants can mark possible matches as unacceptable – a form of preference list truncation)

Any algorithm that yields woman-(man-)optimal matching

→

truthful revelation by women (men) is dominant strategy [Roth 1982]
In GS with men proposing, women can benefit by misreporting preferences

<table>
<thead>
<tr>
<th>Truthful reporting</th>
<th>Strategic reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert</td>
<td>Diane</td>
</tr>
<tr>
<td>Bradley</td>
<td>Emily</td>
</tr>
<tr>
<td>Albert</td>
<td>Diane</td>
</tr>
<tr>
<td>Bradley</td>
<td>Emily</td>
</tr>
<tr>
<td>Diane</td>
<td>Bradley</td>
</tr>
<tr>
<td>Emily</td>
<td>Albert</td>
</tr>
<tr>
<td>Diane</td>
<td>Bradley</td>
</tr>
<tr>
<td>Emily</td>
<td>Albert</td>
</tr>
<tr>
<td>Albert</td>
<td>Diane</td>
</tr>
<tr>
<td>Bradley</td>
<td>Emily</td>
</tr>
<tr>
<td>Albert</td>
<td>Diane</td>
</tr>
<tr>
<td>Bradley</td>
<td>Emily</td>
</tr>
<tr>
<td>Diane</td>
<td>Bradley</td>
</tr>
<tr>
<td>Emily</td>
<td>Albert</td>
</tr>
<tr>
<td>Diane</td>
<td>Bradley</td>
</tr>
<tr>
<td>Emily</td>
<td>Albert</td>
</tr>
</tbody>
</table>
Claim

There is no matching mechanism that:
1. is strategy proof (for both sides); and
2. always results in a stable outcome (given revealed preferences)
EXTENSIONS TO STABLE MARRIAGE
What if we have \(n \) men and \(n' \neq n \) women?

How does this affect participants? Core size?

- Being on short side of market: good!
- W.h.p., short side get rank \(\sim \log(n) \)
- … long side gets rank \(\sim \)random

women held constant at \(n' = 40 \)
IMBALANCE [ASHLAGI ET AL. 2013]

Not many stable matchings with even small imbalances in the market
“Rural hospital theorem” [Roth 1986]:

- The set of residents and hospitals that are unmatched is the same for all stable matchings

Assume n men, $n+1$ women

- One woman w unmatched in all stable matchings
 - \rightarrow Drop w, same stable matchings

Take stable matchings with n women

- Stay stable if we add in w if no men prefer w to their current match
 - \rightarrow average rank of men’s matches is low
ONLINE ARRIVAL [KHULLER ET AL. 1993]

Random preferences, men arrive over time, once matched nobody can switch

Algorithm: match \(m \) to highest-ranked free \(w \)

- On average, \(O(n \log(n)) \) unstable pairs

No deterministic or randomized algorithm can do better than \(\Omega(n^2) \) unstable pairs!

- Not better with randomization 😞
INCOMPLETE PREFS
[MANLOVE ET AL. 2002]

Before: complete + strict preferences
 • Easy to compute, lots of nice properties

Incomplete preferences
 • May exist: stable matchings of different sizes

Everything becomes hard!
 • Finding max or min cardinality stable matching
 • Determining if $<m,w>$ are stable
 • Finding/approx. finding “egalitarian” matching
NON-BIPARTITE GRAPH ...?

Matching is defined on general graphs:

- “Set of edges, each vertex included at most once”
- (Finally, no more “men” or “women” …)

The stable roommates problem is stable marriage generalized to any graph

Each vertex ranks all n-1 other vertices

- (Variations with/without truncation)

Same notion of stability
IS THIS DIFFERENT THAN STABLE MARRIAGE?

<table>
<thead>
<tr>
<th></th>
<th>Alana</th>
<th>Brian</th>
<th>Cynthia</th>
<th>Dracula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alana</td>
<td>Brian</td>
<td>Cynthia</td>
<td>Dracula</td>
<td></td>
</tr>
<tr>
<td>Brian</td>
<td>Cynthia</td>
<td>Alana</td>
<td>Dracula</td>
<td></td>
</tr>
<tr>
<td>Cynthia</td>
<td>Alana</td>
<td>Brian</td>
<td>Dracula</td>
<td></td>
</tr>
<tr>
<td>Dracula</td>
<td>(Anyone)</td>
<td>(Anyone)</td>
<td>(Anyone)</td>
<td></td>
</tr>
</tbody>
</table>

No stable matching exists!
Anyone paired with Dracula (i) prefers some other v and (ii) is preferred by that v
HOPELESS?

Can we build an algorithm that:

• Finds a stable matching; or
• Reports nonexistence

... In polynomial time?

Yes! [Irving 1985]

• Builds on Gale-Shapley ideas and work by McVitie and Wilson [1971]
IRVING’S ALGORITHM: PHASE 1

Run a deferred acceptance-type algorithm

If at least one person is unmatched: nonexistence

Else: create a reduced set of preferences

• a holds proposal from $b \rightarrow a$ truncates all x after b
• Remove a from x’s preferences
• Note: a is at the top of b’s list

If any truncated list is empty: nonexistence

Else: this is a “stable table” – continue to Phase 2
STABLE TABLES

1. \(a \) is first on \(b \)'s list iff \(b \) is last on \(a \)'s

2. \(a \) is not on \(b \)'s list iff
 - \(b \) is not on \(a \)'s list
 - \(a \) prefers last element on list to \(b \)

3. No reduced list is empty

Note 1: stable table with all lists length 1 is a stable matching

Note 2: any stable subtable of a stable table can be obtained via rotation eliminations
IRVING’S ALGORITHM: PHASE 2

Stable table has length 1 lists: return matching

Identify a rotation:

\((a_0, b_0), (a_1, b_1), \ldots, (a_{k-1}, b_{k-1})\) such that:
- \(b_i\) is first on \(a_i\)’s reduced list
- \(b_{i+1}\) is second on \(a_i\)’s reduced list (\(i+1\) is mod \(k\))

Eliminate it:
- \(a_0\) rejects \(b_0\), proposes to \(b_1\) (who accepts), etc.

If any list becomes empty: nonexistence

If the subtable hits length 1 lists: return matching
Claim
Irving’s algorithm for the stable roommates problem terminates in polynomial time – specifically $O(n^2)$.

This requires some data structure considerations

- Naïve implementation of rotations is $\sim O(n^3)$
ONE-TO-MANY MATCHING

The hospitals/residents problem (aka college/students problem aka admissions problem):

• Strict preference rankings from each side
• One side (hospitals) can accept $q > 1$ residents

Also introduced in [Gale and Shapley 1962]

Has seen lots of traction in the real world

• E.g., the National Resident Matching Program (NRMP)
• 5/1 – will talk about school choice
NEXT CLASS:

REAL-WORLD MATCHING: ORGAN EXCHANGE