APPLIED MECHANISM DESIGN FOR SOCIAL GOOD

JOHN P DICKERSON

Lecture #12 - 03/06/2018

CMSC828M Tuesdays & Thursdays 9:30am – 10:45am

THIS CLASS: ORGAN EXCHANGE

KIDNEY TRANSPLANTATION

- US waitlist: over 100,000
 - 36,157 added in 2014
- 4,537 people died while waiting
- 11,559 people received a kidney from the deceased donor waitlist

- (See last class' lecture on deceased donor allocation.)
- 5,283 people received a kidney from a lip
 - Some through kidney exchanges

Last time,

I promise!

KIDNEY EXCHANGE

(2- and 3-cycles, all surgeries performed simultaneously)

NON-DIRECTED DONORS & CHAINS

[Rees et al. 2009]

Not executed simultaneously, so no length cap required based on logistic concerns ...

... but in practice edges fail, so often some finite cap is used!

THE CLEARING PROBLEM

The clearing problem is to find the "best" disjoint set of cycles of length at most *L*, and chains (maybe with a cap *K*)

• Very hard combinatorial optimization problem that we will focus on in the succeeding two lectures.

INDIVIDUAL RATIONALITY (IR)

Will I be better off participating in the mechanism than I would be otherwise?

Long-term IR:

• In the long run, a center will receive at least the same number of matches by participating

Short-term IR:

• At each time period, a center receives at least the same number of matches by participating

STRATEGY PROOFNESS

Do I have any reason to lie to the mechanism?

In any state of the world ...

 { time period, past performance, competitors' strategies, current private type, etc }

... a center is not worse off reporting its full private set of pairs and altruists than reporting any other subset

 \rightarrow No reason to strategize

Does the mechanism result in the absolute best possible solution?

Efficiency:

 Produces a maximum (i.e., max global social welfare) matching given all pairs, regardless of revelation

IR-Efficiency:

Produces a maximum matching constrained by short-term individual rationality

FIRST: ONLY CYCLES (NO CHAINS)

THE BASIC KIDNEY EXCHANGE GAME [Ashlagi & Roth 2014, and earlier]

Set of *n* transplant centers $T_n = \{t_1 \dots t_n\}$, each with a set of incompatible pairs V_h

Union of these individual sets is *V*, which induces the underlying compatibility graph

Want: all centers to participate, submit full set of pairs

An allocation *M* is *k*-maximal if there is no allocation *M*' that matches all the vertices in *M* and also more

• Note: *k*-efficient \rightarrow *k*-maximal, but not vice versa

[Ashlagi & Roth 2014, and earlier]

- Vertices a_1 , a_2 belong to center a_1 , b_1 , b_2 belong to center b_1
- . Center a could match 2 internally
- . By participating, matches only 1 of its own
- . Entire exchange matches 3 (otherwise only 2)

IT CAN GET MUCH WORSE [Ashlagi & Roth 2014, and earlier]

Theorem: For k>2, there exists *G* s.t. no IR *k*-maximal mechanism matches more than 1/(*k*-1)-fraction of those matched by *k*-efficient allocation

- Bound is tight
- All but one of *a*'s vertices is part of another length *k* exchange (from different agents)
- *k*-maximal and IR if *a* matches his *k* vertices (but then nobody else matches, so *k* total)
- *k*-efficient to match (k-1)*k

RESTRICTION #1 [Ashlagi & Roth 2014, and earlier]

Theorem: For all *k* and all compatibility graphs, there exists an IR *k*-maximal allocation

Proof sketch: construct *k*-efficient allocation for each specific hospital's pool V_h

Repeatedly search for larger cardinality matching in an entire pool that keeps all already-matched vertices matched (using augmenting matching algorithm from Edmonds)

Once exhausted, done

RESTRICTION #2 [Ashlagi & Roth 2014, and earlier]

Theorem: For *k*=2, there exists an IR 2-efficient allocation in every compatibility graph

Idea: Every 2-maximal allocation is also 2-efficient

This is a PTIME problem with, e.g., a standard $O(|V|^3)$ bipartite augmenting paths matching algorithm

By Restriction #1, 2-maximal IR always exists \rightarrow this 2efficient IR always exists

RESTRICTION #3 [Ashlagi et al. 2015]

Theorem: No IR mechanism is both maximal and strategyproof (even for *k*=2)

Suppose mechanism is IR and maximal ...

MORE NEGATIVE MECHANISM DESIGN RESULTS [Ashlagi et al. 2015]

Just showed IR + strategyproof \rightarrow not maximal

No IR + strategyproof mechanism can guarantee more than ¹/₂-fraction of efficient allocation

 Idea: same counterexample, note either the # matched for hospital a < 3, or # matched for hospital b < 2. Proof by cases follows

No IR + strategyproof randomized mechanism can guarantee 7/8-fraction of efficiency

 Idea: same counterexample, bounds on the expected size of matchings for hospitals a, b

HOPELESS ...?

00

DYNAMIC, CREDIT-BASED MECHANISM [Hajaj et al. AAAI-2015]

Repeated game

Centers are risk neutral, self interested

Transplant centers have (private) sets of pairs:

- Maximum capacity of 2k_i
- General arrival distribution, mean rate is k_i
- Exist for one time period

Centers reveal subset of their pairs at each time period, can match others internally

CREDITS

Clearinghouse maintains a credit balance *c_i* for each transplant center over time

High level idea:

- **REDUCE** c_i: center *i* reveals fewer than expected
- **INCREASE** *c_i*: center *i* reveals more than expected
- **REDUCE** *c_i*: mechanism tiebreaks in center *i*'s favor
- INCREASE c_i: mechanism tiebreaks against center I

Also remove centers who misbehave "too much."

Credits now \rightarrow matches in the future

THE DYNAMIC MECHANISM

1. Initial credit update

- Centers reveal pairs
- Mechanism updates credits according to k_i
- 2. Compute maximum global matching
 - Gives the utility U_g of *a* max matching
- 3. Selection of a final matching
 - Constrained to those matchings of utility U_g
 - Take c_i into account to (dis)favor utility given by matching to a specific center i
 - Update c_i based on this round's (dis)favoring
- 4. Removal phase if center is negative for "too long"

THEORETICAL GUARANTEES

Theorem: No mechanism that supports cycles and chains can be both long-term IR and efficient

Theorem: Under reasonable assumptions, the prior mechanism is both long-term IR and efficient

LOTS OF OPEN PROBLEMS HERE

Dynamic mechanisms are more realistic, but ...

- Vertices disappear after one time period
- All hospitals the same size
- No weights on edges
- No uncertainty on edges or vertices
- Upper bound on number of vertices per hospital
- Distribution might change over time

WHAT DO EFFICIENT MATCHINGS EVEN LOOK LIKE ...?

Next class: given a specific graph, what is the "optimal matching"

This class: given a **family of graphs**, what do "optimal matchings" tend to look like?

Use a stylized random graph model, like [Saidman et al. 2006]:

- Patient and donor are drawn with blood types randomly selected from PDF of blood types (roughly mimics US makeup), randomized "high" or "low" CPRA
- Edge exists between pairs if candidate and donor are ABOcompatible and tissue type compatible (random roll weighted by CPRA)

RANDOM GRAPH PRIMER

Canonical Erdős-Rényi random graph G(m,p) has m vertices and an (undirected) edge between two vertices with probability p

Let Q be the property of "there exists a perfect matching" in this graph

The convergence rate to 1 (i.e., "there is almost certainly a near perfect matching in this graph) is exponential in *p*

- $Pr(G(m,m,p) \text{ satisfies } Q) = 1 o(2^{-mp})$
- At least as strong with non-bipartite random graphs

Early random graph results in kidney exchange are for "in the large" random graphs that (allegedly) mimic the real compatibility graphs

• All models are wrong, but some are useful?

A STYLIZED ERDŐS-RÉNYI-STYLE MODEL OF KIDNEY EXCHANGE

In these random (ABO- & PRA-) graphs:

- # of O-{A, B, AB} pairs > {A, B, AB}-O pairs
- # of {A, B}-AB pairs > AB-{A, B} pairs
- Constant difference between # A-B and # B-A

Idea #1: O-candidates are hard to self-match

Idea #2: {A, B}-candidates are hard to self-match

Idea #3: "symmetry" between A-B and B-A (equally hard to self-match, give or take)

EFFICIENT MATCHING IN DENSE GRAPHS WITH ONLY CYCLES

Under some other assumptions about PRA ...

Almost every large random (ABO- & PRA-) graph has an efficient allocation that requires exchanges of size at most 3 with the following:

- X-X pairs are matched in 2- or 3-way exchanges with other X-X pairs (so-called "self-demand")
- B-A pairs are 2-matched with A-B pairs
- The leftovers of {A-B or B-A} are 3-matched with "good" {O-A, O-B} pairs and {O-B, O-A pairs}
- 3-matches with {AB-O, O-A, A-AB}
- All the remaining 2-matched as {O-X, X-O}

VISUALLY ...

PRICE OF FAIRNESS

Efficiency vs. fairness:

- Utilitarian objectives may favor certain classes at the expense of marginalizing others
- Fair objectives may sacrifice efficiency in the name of egalitarianism

Price of fairness: relative system efficiency loss under a fair

allocation [Bertismas, Farias, Trichakis 2011] [Caragiannis et al. 2009]

• **Clearing problem**: find a matching *M*^{*} that maximizes utility function

 $M^* = \operatorname*{argmax}_{M \in \mathcal{M}} u(M)$

• **Price of fairness**: relative loss of *match efficiency* due to *fair* utility function

$$POF(\mathcal{M}, u_f) = \frac{u(M^*) - u(M_f^*)}{u(M^*)}$$

 $V_{\{L,H\}}$: lowly-, highly-sensitized vertices

 $\boldsymbol{\lambda}$: fraction of pool that is lowly-sensitized

 $p_{\{L,H\}}$: prob. ABO-compatible is tissue-type incompatible

 $p = \lambda p_L + (1-\lambda)p_H$: average level of sensitization

"Most stringent" fairness rule:

$$u_{H \succ L}(M) = \begin{cases} u(M) & \text{if } |M_H| = \max_{M' \in \mathcal{M}} |M'_H| \\ 0 & \text{otherwise} \end{cases}$$

Theorem

Assume p < 2/5, $\lambda \ge$ 1-p, and "reasonable" distribution of blood types.

Then, almost surely as $n \rightarrow \infty$,

$$\mathsf{POF}(\mathcal{M}, u_{H\succ L}) \le \frac{2}{33}.$$

(And this is achieved using cycles of length at most 3.)

IN THEORY, THE PRICE OF FAIRNESS IS LOW

PROBLEMS WITH THIS TYPE OF MODEL

Dense model [Saidman et al. 2006, etc.]

- Constant probability of edge existing
- Less useful in practice [Ashlagi et al. 2012+, Dickerson et al. 2014+]

Better? Sparse model [Ashlagi et al. 2012]

- 1- λ fraction is *highly-sensitized* ($p_H = c/n$)
- λ fraction is *lowly-sensitized* ($p_L > 0$, constant)

But still:

• Random graph models tend to be "in the large", no weights, no uncertainty, fairly homogeneous ... so not perfect!

A TASTE OF THE SPARSE MODEL ...

MOVING BEYOND KIDNEYS: LIVERS [Ergin, Sönmez, Ünver w.p. 2015]

Similar matching problem (mathematically)

Donor Mortality: 0.5% Size: 60% Most risky! Donor Mortality: 0.1% Size: 40% Often too small

Donor Mortality: Rare Size: 20% Only pediatric [Sönmez 2014]

Right lobe is **biggest** but **riskiest**; exchange may reduce right lobe usage and increase transplants

MOVING BEYOND KIDNEYS: MULTI-ORGAN EXCHANGE [Dickerson Sandholm AAAI-14, JAIR-16]

Chains are great! [Anderson et al. 2015, Ashlagi et al. 2014, Rees et al. 2009]

Kidney transplants are "easy" and popular:

Many altruistic donors

Liver transplants: higher mortality, morbidity:

• (Essentially) no altruistic donors

SPARSE GRAPH, MANY ALTRUISTS

 n_{κ} kidney pairs in graph D_{κ} ; $n_{L} = \gamma n_{\kappa}$ liver pairs in graph D_{L}

Number of altruists $t(n_{\kappa})$

Constant $p_{K \rightarrow L} > 0$ of kidney donor willing to give liver Constant cycle cap *z*

Theorem

Assume $t(n_{\kappa}) = \beta n_{\kappa}$ for some constant $\beta > 0$. Then, with probability 1 as $n_{\kappa} \rightarrow \infty$,

Any efficient matching on $D = join(D_K, D_L)$ matches $\Omega(n_K)$ more pairs than the aggregate of efficient matchings on D_K and D_L .

Building on [Ashlagi et al. 2012]

INTUITION

Find a linear number of "good cycles" in D_L that are length > z

 Good cycles = isolated path in highly-sensitized portion of pool and exactly one node in low portion

Extend chains from D_K into the isolated paths (aka can't be matched otherwise) in D_L , of which there are linearly many

• Have to worry about $p_{K \rightarrow L}$, and compatibility between vertices Show that a subset of the dotted edges below results in a linear-innumber-of-altruists max matching

- \rightarrow linear number of $D_{\mathcal{K}}$ chains extended into $D_{\mathcal{L}}$
- \rightarrow linear number of previously unmatched D_L vertices matched

SPARSE GRAPH, FEW ALTRUISTS

 n_{κ} kidney pairs in graph D_{κ} ; $n_{L} = \gamma n_{\kappa}$ liver pairs in graph D_{L}

Number of altruists t – no longer depends on $n_{\kappa}!$

 λ is frac. lowly-sensitized

Constant cycle cap z

Theorem

Assume constant *t*. Then there exists $\lambda' > 0$ s.t. for all $\lambda < \lambda'$

Any efficient matching on $D = \text{join}(D_K, D_L)$ matches $\Omega(n_K)$ more pairs than the aggregate of efficient matchings on D_K and D_L .

With constant positive probability.

Building on [Ashlagi et al. 2012]

INTUITION

For large enough λ (i.e., lots of sensitized patients), there exist pairs in D_K that can't be matched in short cycles, thus only in chains

• Same deal with D_L , except there are no chains

Connect a long chain (+altruist) in D_K into an unmatchable long chain in D_L , such that a linear number of D_L pairs are now matched

MOVING BEYOND KIDNEYS: LUNGS [Ergin, Sönmez, Ünver w.p. 2014]

Fundamentally different matching problem

Two donors needed

Donor 1

(Compare to the single configuration for a "3-cycle" in kidney exchange.)

OTHER RECENT & ONGOING RESEARCH IN THIS SPACE

Dynamic matching theory with a kidney exchange flavor:

- Akbarpour et al., "Thickness and Information in Dynamic Matching Markets"
- Anderson et al., "A dynamic model of barter exchange"
- Ashlagi et al., "On matching and thickness in heterogeneous dynamic markets"
- Das et al., "Competing dynamic matching markets"

Mechanism design:

• Blum et al. "Opting in to optimal matchings"

Not "in the large" random graph models:

 Ding et al., "A non-asymptotic approach to analyzing kidney exchange graphs

NEXT CLASS: OPTIMAL BATCH CLEARING OF ORGAN EXCHANGES

