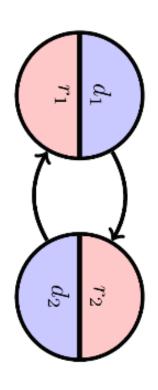
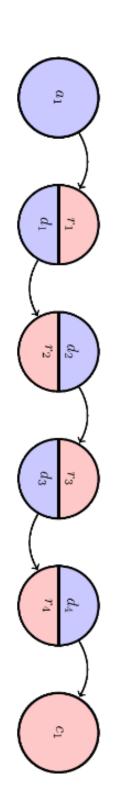
EXCHANGE USING THE FINDING LONG CHAINS IN KIDNEY TRAVELING SALESMAN PROBLEM


(Presented by Alireza Farhadi) and Alvin E. Roth Ross Anderson, Itai Ashlagi, David Gamarnik

Kidney Exchange Problem


- Given donors and patients, maximize the total number of transplants performed
- Two types of donors
- Altruistic donors: willing to donate their kidney without asking for anything
- Patient-donor pairs

Kidney Exchange Problem

Cycles

Chains

Kidney Exchange Problem

- To exchange cycles, all the surgeries must be performed simultaneously
- Very complicated for the large cycles
- Each cycle can have at most k nodes

Formal Definition

- G = (V, E; w) : a directed weighted graph
- k : maximum length of cycles
- N : altruistic donors
- P: patient-donor pairs
- $V = N \cup P$

Recursive IP Formulation

$$\max_{e \in E} w_e y_e$$

s.t.
$$\sum_{e \in \delta^-(\nu)} y_e = f_{\nu}^i \quad \nu \in V$$

$$\sum_{e \in \delta^+(\nu)} y_e = f_{\nu}^o \quad \nu \in V$$

$$f_{\nu}^{o} \le f_{\nu}^{i} \le 1 \quad \nu \in P,$$

$$f_{\nu}^{o} \leq 1 \quad \nu \in N$$

$$\sum_{e \in C} y_e \le |C| - 1 \quad C \in \mathcal{C} \setminus \mathcal{C}_k,$$

$$y_e \in \{0,1\} \quad e \in E.$$

•
$$y_e$$
 : decision variable for each edge

• f_v^ι : in-flow of vertex v

2

 $m{\cdot} f_{v}^{o}$: out-flow of vertex v

C: set of all cycles

4

C_k: all the cycles with

the length at most k

Recursive IP Formulation

Number of constraints is exponential in |E|

$$\sum_{e \in C} y_e \le |C| - 1 \quad C \in \mathcal{C} \setminus \mathcal{C}_k,$$

- Eliminate all the constraints for the cycles
- Add violated constraints and resolve the IP

TSP-Based IP

- Using different decision variables for cycles and chains
- Finding chains is similar to prize-collecting TSP.
- PC-TSP: visit each city (patient-donor pair) exactly once, but with for leaving pairs unmatched) the additional option to pay some penalty to skip a city (penalized
- We add a decision variable for every cycle of length at most k

TSP-Based IP

$$\max \sum_{e \in E} w_{e}y_{e} + \sum_{C \in C_{k}} w_{C}z_{C}$$

$$\text{s.t.} \quad \sum_{e \in \delta^{-}(\nu)} y_{e} = f_{\nu}^{i} \quad \nu \in V$$

$$\sum_{e \in \delta^{+}(\nu)} y_{e} = f_{\nu}^{o} \quad \nu \in V$$

$$\sum_{e \in \delta^{+}(\nu)} z_{C} \leq f_{\nu}^{i} + \sum_{C \in C_{k}(\nu)} z_{C} \leq 1 \quad \nu \in P,$$

$$f_{\nu}^{o} \leq 1 \quad \nu \in N,$$

$$\sum_{e \in \delta^{-}(S)} y_{e} \geq f_{\nu}^{i} \quad S \subseteq P, \quad \nu \in S$$

$$\sum_{e \in \delta^{-}(S)} y_{e} \geq f_{\nu}^{i} \quad S \subseteq P, \quad \nu \in S$$

$$z_{C} \in \{0, 1\} \quad e \in E,$$

$$z_{C} \in \{0, 1\} \quad C \in C_{k}.$$

 z_{C} : decision variable for the cycles of length at most k

<u>6</u>

TSP-Based IP

- Every chain begins in N (altruistic donors)
- For every vertex v, and a partitioning of vertices into sets $S, V \setminus S$ such that $v \in S$ and $N \subseteq V / S$
- In-flow of S must be at least f_v^t

$$\sum_{e \in \delta^-(S)} y_e \ge f_{\nu}^i \quad S \subseteq P, \quad \nu \in S$$

Number of constraints is exponential in |E|

Finding violated Constraints

- Violated constraints can be found using the max flow-min cut problem.
- We add a source vertex s to our graph and connect it to the vertices in N to get a new graph $\bar{G} = (\bar{V}, \bar{E}; \bar{w})$
- $\overline{V} = V \cup \{s\}$
- $\bar{E} = E \cup \{(s, n) \mid n \in N\}$
- $\overline{w} = \left\{ egin{array}{ll} y_e & e \in E \ 1 & otherwise \end{array}
 ight.$
- For every vertex v, we solve the max flow-min cut problem with the source s and the sink u

Performance of TSP-IP

2	7	ω	4	∞	7	10	6	10	6	⇉	<u>-</u>	10	6	7	10	ω	10	6	6	6	5	6	10	ω	NDDs	
389	198	199	289	275	291	256	330	256	261	257	310	255	215	255	257	269	152	312	328	324	284	263	156	202	Patient-donor pairs	
8,346	4,882	2,581	3,499	3,158	3,771	2,347	13,399	2,411	8,915	2,502	4,463	2,550	6,145	2,390	2,461	2,642	1,125	13,045	13,711	13,175	10,126	8,939	1,109	4,706	Edges	
1,200*	1,200*	1,200*	1,200*	1,200*	1,200*	1,200	1,200	587.238	1,200	1,039.105	721.66	216.48	248.46	85.475	67.783	40.506	48.56	1,200*	474.947	418.27	71.066	59.158	13.093	0.148	Recursive	Running time, s
0.096	8.204	0.041	0.2	0.224	0.221	0.305	1.621	0.114	4.435	0.125	0.555	0.126	0.532	0.268	0.258	0.134	0.054	0.157*	1.947	0.981	0.807	1.655	0.022	0.031	TSP	time, s

Timeouts (optimal solution not found) are indicated by an asterisk.

hank You