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THIS CLASS:
BATCH CLEARING OF 
ORGAN EXCHANGES
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THE CLEARING PROBLEM

The clearing problem is to find the “best” disjoint set of 
cycles of length at most L, and chains (maybe with a cap K)

• This class: only consider static matching in the present
• Next class: more general dynamic matching over time
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SPECIAL CASE: L = 2
PTIME: translate to maximum matching on undirected graph
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SPECIAL CASE: L = ∞
PTIME via formulation as maximum weight perfect matching
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GENERAL CASE: L = ?
NP-hard via reduction from 3D-matching:

• Given disjoint sets X, Y, Z of size q …

• ... and a set of triples T ⊆ X x Y x Z ...

• ... is there a disjoint subset M ⊆ T of size q?
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GENERAL CASE: L = ?
Construct a gadget for each ti = {xa, yb, zc} in T
• Gadgets intersect only on vertices in X ⋃ Y ⋃ Z 
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GENERAL CASE: L = ?
M is perfect matching à construction has perfect cycle cover.
For ti in T:
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GENERAL CASE: L = ?
M is perfect matching à construction has perfect cycle cover.
For ti not in T:
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GENERAL CASE: L = ?
We have a perfect cycle cover à M is a perfect 3D matching
• Construction only has 3-cycles and L-cycles
• Short cycles (i.e., 3-cycles) are disjoint from the rest of the 

graph by construction
Thus, given a perfect cover (by assumption):
• Widgets either contribute according to ti in M …
• … or ti not in M.
Thus there is a perfect matching in the original 3D matching 
instance.
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HOPELESS …?
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BASIC APPROACH #1:
THE EDGE FORMULATION

Binary variable xij for each edge from i to j

Maximize
u(M) = Σ wij xij

Subject to
Σj xij = Σj xji for each vertex i

Σj xij ≤ 1 for each vertex i

Σ1≤k≤L xi(k)i(k+1) ≤ L-1 for paths i(1)…i(L+1)

(no path of length L that doesn’t end where it started – cycle cap)

[Abraham et al. 2007]

Flow constraint
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STATE OF THE ART FOR 
EDGE FORMULATION
Builds on the prize-collecting traveling salesperson problem [Balas
Networks-89]

• PC-TSP: visit each city (patient-donor pair) exactly once, but with 
the additional option to pay some penalty to skip a city (penalized 
for leaving pairs unmatched)

They maintain decision variables for all cycles of length at most L, 
but build chains in the final solution from decision variables 
associated with individual edges
Then, an exponential number of constraints could be required to 
prevent the solver from including chains of length greater than K; 
these are generated incrementally until optimality is proved.

• Leverage cut generation from PC-TSP literature to provide stronger 
(i.e. tighter) IP formulation

[Anderson et al. PNAS-2015]
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BEST EDGE FORMULATION
[Anderson et al. 2015]
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If: flow into v from a chain
Then: at least as much flow
across cuts from {A}
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Ck
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Binary variable xc for each feasible cycle or chain c
Maximize

u(M) = Σ wc xc
Subject to

Σc : i in c xc ≤ 1 for each vertex i

[Roth et al. 2004, 2005,
Abraham et al. 2007]

BASIC APPROACH #2:
THE CYCLE FORMULATION
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SOLVING THE CYCLE 
FORMULATION IP
Too large to write down
• O(max{ |P|L, |A||P|K-1 }) variables

• |A| = 5, |V|=300, L=3, K=20 … |A||P|K-1 ≈ 5 x 1047

Approach: branch-and-price [Barnhart et al. 1998]:

• Branch: select fractional column and fix its value to 1 and 0 
respectively

• Fathom the search node if no better than incumbent

• Solve LP relaxation using column generation

x7

x4

1 0

1 0

… …

…
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COLUMN GENERATION
Master LP P has too many variables
• Won’t fit in memory, and/or would take too long to solve

Begin with restricted LP P’, which contains only a small 
subset of the variables (i.e., cycles)
• OPT(P’) ≤ OPT(P)

Solve P’ and, if necessary, add more variables to it
• We do this intelligently by solving the pricing problem

Repeat until OPT(P’) = OPT(P)
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DFS TO SOLVE 
PRICING PROBLEM
Pricing problem:

• Optimal dual solution π* to reduced model
• Find non-basic variables with positive price (for a 

maximization problem)
• 0 < weight of cycle – sum of duals in π* of constituent vertices
• Positive price for cycle à dual constraint is violated
• No positive price cycles à no dual constraints violated

First approach [Abraham et al. EC-2007] explicitly prices all 
feasible cycles and chains through a DFS

• Can speed this up in various ways, but proving no positive 
price cycles exist still takes a long time

[Abraham et al. EC-07]
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GENERAL PRICING OF CYCLES & 
CHAINS IS NP-HARD
Reduce from Hamiltonian path
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[Plaut et al. arXiv:1606.00117]
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COMPARISON
Tradeoffs in number of variables, constraints

• IP #1: O(|E|L) constraints vs. O(|V|) for IP #2
• IP #1: O(|V|2) variables vs. O(|V|L) for IP #2

IP #2’s relaxation is weakly tighter than #1’s.  Quick intuition 
in one direction: 

• Take a length L+1 cycle.  #2’s LP relaxation is 0.
• #1’s LP relaxation is (L+1)/2     – with ½ on each edge

Recent work focuses on balancing tight LP relaxations and 
model size [Constantino et al. 2013, Glorie et al. 2014, Klimentova et al. 2014, Alvelos et 
al. 2015, Anderson et al. 2015, Mak-Hau 2015, Manlove&O’Malley 2015, Plaut et al. 2016, …]:

• Newest work: compact formulations, some with tightest 
relaxations known, all amenable to failure-aware matching
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COMPACT 
FORMULATIONS
Previous models: exponential #constraints (CG methods) 

or #variables (B&P methods)
Let F be upper bound on #cycles in a final matching
Create F copies of compatibility graph
Search for a single cycle or chain in each copy

• (Keep cycles/chains disjoint across graphs)

[Constantino et al. EJOR-14]
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1A: max edge weights over all graph copies
1B: give a kidney <-> get a kidney within that copy
1C: only use a vertex once
1D: cycle cap

maximize
X

f

X

(i,j)2A

wijx
f
ij

subject to
X

j:(j,i)2A

xf
ij =

X

j:(i,j)2A

xf
ij 8i 2 V, 8f 2 {1, . . . , F}

X

f

X

j:(i,j)2A

xf
ij  1 8i 2 V

X

(i,j)2A

xf
ij  k 8f 2 {1, . . . , F}

xf
ij 2 {0, 1} 8(i, j) 2 A, 8f 2 {1, . . . , F}

1A

1B

1C

1D

1E

xf
ij =

⇢
1 if arc (i, j) is selected to be in copy f of the graph,
0 otherwise

COMPACT FORMULATIONS
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Polynomial #constraints and 
#variables!



PIEF: A COMPACT MODEL 
FOR CYCLES ONLY
Builds on Extended Edge Formulation of Constantino et al.

• O(|V|) copies of graph, 1 binary variable per edge per copy

• Enforce at most one cycle per graph copy used

• Track positions of edges in cycles for LP tightness

The tightest known non-compact LP relaxation
ZCF = ZPIEF

(disallowing chains)

T
H
E
O
R
E
M

(EC-16 paper also presents HPIEF, which is a compact 
formulation for cycles and chains, but with weaker ZHPIEF)
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[Dickerson Manlove Plaut Sandholm Trimble EC-16]



PICEF: POSITION-INDEXED 
CHAIN-EDGE FORMULATION
In practice, cycle cap L is small and chain cap K is large
Idea: enumerate all cycles but not all chains [Anderson et al. 2015]

• That work required O(|V|K) constraints in the worst case
• This work requires O(K|V|) = O(|V|2) constraints 

Track not just if an edge is used in a chain, but 
where in a chain an edge is used.

M
A
I
N

I
D
E
A

For edge (i,j) in graph: K’(i,j) = {1} if i is an altruist
K’(i,j) = {2, …, K} if i is a pair
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[Dickerson et al. EC-16]



PICEF: POSITION-INDEXED 
CHAIN-EDGE FORMULATION
Maximize

u(M) = Σij in E Σk in K’(i,j) wij yijk + Σc in C wc zc

Subject to
Σij in E Σk in K’(i,j) yijk + Σc : i in c zc ≤ 1 for every i in Pairs

Each pair can be in at most one chain or cycle

Σij in E yij1 ≤ 1 for every i in Altruists

Each altruist can trigger at most one chain via outgoing edge at position 1

Σj:ij in E yijk+1 - Σj:ji in E ⌃ k in K’(j,i) yjik ≤ 0 for every i in Pairs
and k in {1, …, K-1}

Each pair can be have an outgoing edge at position k+1 in a chain iff it 
has an incoming edge at position k in a chain 25

[Dickerson et al. EC-16]



WHAT IF THERE ARE STILL 
TOO MANY VARIABLES?
In particularly dense graphs or if, in the future, longer cycle 
caps are allowed, PICEF may need too many cycle variables
Solve via branch and price by storing only a subset of 
columns in memory, then solving pricing problem
• Search for variables with positive price, bring into model

• Previously: that search is exponential in chain cap [Abraham et al. 
2007, Glorie et al. 2014, Plaut et al. 2016]

• General: pricing chains & cycle is NP-hard [arXiv:1606.00117]

But we only need to price cycles, not chains!

PICEF is the first branch-and-price-based model with 
provably correct polynomial-time pricing

P
R
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[Dickerson et al. EC-16]



POLYNOMIAL-TIME 
CYCLE PRICING
Solve a structured problem that implicitly prices variables
• Variable = xc for cycle (not chain) c
• Price of xc =  wc – Σv in c δv

Example
• Price: (2+3+2) – (δP1+δP2+δP3)

=    Σe in c we – Σv in c δv
= Σ(u,v) in c [w(u,v) – δv]

Idea: Take G, create G’ s.t. all edges e = (u,v) are reweighted 
r(u,v) = δv – w(u,v)
• Positive price cycles in G = negative weight cycles in G’

P1

P2 P3

2 2

3wc

[Glorie et al. MSOM-2014, Plaut et al. AAAI-2016]
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ADAPTED BELLMAN-FORD 
PRICING FOR CYCLES ONLY
Bellman-Ford finds shortest paths
• Undefined in graphs with negative weight
• Adapt B-F to prevent internal looping during the traversal

• Shortest path is NP-hard (reduce from Hamiltonian path):
• Set edge weights to -1, given edge (u,v) in E, ask if shortest 

path from u to v is weight 1-|V| à visits each vertex exactly 
once

• We only need some short path (or proof that no negative 
cycle exists)

• Now pricing runs in time O(|V||E|L2)

[Glorie et al. MSOM-2014, Plaut et al. AAAI-2016]

28



FAILURE-AWARE 
KIDNEY EXCHANGE
In practice, not all edges exist; lots of recent work [Li et al. 2011, Dickerson et 
al. 2013, Blum et al. 2013, Anderson et al. 2015, Blum et al. 2015, Glorie et al. 2016, Pedroso&Ikeda 2016, Assadi et al. 2016]

One approach: associate a success probability p with each 
edge, maximize expected size of remaining matching after 
independent edge failures [Dickerson et al. 2013]:

• Cycles succeed only if all edges succeed
• Chains succeed up to first edge failure

Earlier compact formulations cannot be adapted to this model 
due to expected utility of edge changing based on position

Minor adjustment to PICEF’s objective function:
up(M) = Σij in E Σk in K’(i,j) pk wij yijk + Σc in C p|c| wc zc

Can also adapt Bellman-Ford to give a failure-aware 
polynomial time pricing algorithm for cycles

B
&
P 29

[Dickerson et al. EC-13, EC-16]

More on 
uncertainty 
next lecture!



HOW DO ALL THESE MODELS 
PERFORM IN PRACTICE?

Test on real and simulated match runs from:
• US UNOS exchange: 143+ transplant centers

• UK NLDKSS: 20 transplant centers

Following are tests against actual code for:
• BnP-DFS [Abraham et al. EC-07]

• BnP-Poly [Glorie et al. MSOM-14, Plaut et al. AAAI-16]

• CG-TSP [Anderson et al. PNAS-15]
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REAL MATCH RUNS
UNOS & NLDKSS
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UNOS: 286 match runs NLDKSS: 17 match runs
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GENERATED DATA
|P|=700, INCREASING %ALTRUISTS
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2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |N | = 7
HPIEF
PICEF
BNP-PICEF
BNP-POLY
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Chain length cap

|P | = 700, |N | = 14

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |N | = 35

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |N | = 175

Solvers that are not shown timed out (within one-hour period).
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IS LIFE ALWAYS SO (NP-)HARD?
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ONE SIMPLE ASSUMPTION 
COMPLEXITY THEORY HATES!
• Observation: real graphs are constructed from a few 

thousand if statements
• If the patient and donor have compatible blood types …
• ... and if they are compatible on 61 tissue type features ...
• ... and if their insurances match, and ages match, and ...
• ... then draw a directed edge; otherwise, don’t

• Hypothesis: real graphs can be represented by a small
constant number of bits per vertex – we’ll test later
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Given a constant number of if statements and a constant 
cycle cap, the clearing problem is in polynomial time
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[Dickerson Kazachkov Procaccia Sandholm arxiv:1605.07728]



A NEW MODEL FOR 
KIDNEY EXCHANGE
• Graph G = (V, E) with patient-donor pair vi in V with

• Attribute vectors di and pi such that the qth element of di
(resp. pi) takes on one of a fixed number of types

• E.g., diq or piq takes a blood type in {O, A, B, AB}
• Call Q the set of all possible “types” of d and p

• Then, given compatibility function f : Q x Q à {0,1} that 
uniquely determines if an edge between di and pj exists

• We can create any compatibility graph (for large enough 
vectors in D and P)

• (Altruists are patient-donor pairs where the “patient” is 
compatible with all donors à chains are now cycles)
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[Dickerson et al. arxiv:1605.07728]



• Let f(q,q’) = 1 if there is a directed edge from a donor with 
type q to a patient with type q’

• For all q = ( <q1,p,q1,d> …, <qr,p,qr,d>) in Q2r let
fC(q) = 1 if f(qt,d,qt+1,p) = 1 and f(qr,d,q1,p) = 1

• Given cycle cap L, define
T(L) = { q in Q2r : r ≤ L and fC(q) = 1 }
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CLEARING IS NOW IN 
POLYNOMIAL TIME

Given constant L and |Q|, 
the clearing problem is in polynomial time
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CLEARING IS NOW IN 
POLYNOMIAL TIME
• T(L) is all vectors of types that create feasible cycles of 

length up to L
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CLEARING IS NOW IN 
POLYNOMIAL TIME
• Each set {mq} says we have mq1 cycles of type q1, mq2 cycles of 

q2, …, mq|T(L)| cycles of q|T(L)|, constrained to at most n cycles total
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CLEARING IS NOW IN 
POLYNOMIAL TIME
• Check to see if this collection is a legal cycle cover – just 

check that each type q isn’t used too many times in mq
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CLEARING IS NOW IN 
POLYNOMIAL TIME
• Return the legal cycle cover such that the sum over q of 
mq is maximized – aka the largest legal cycle cover



FLIPPING ATTRIBUTES IS 
ALSO EASY 
• The human body tries to reject transplanted organs

• Before transplantation, can immunnosupress some “bad” 
traits of the patient to increase transplant opportunity

• Takes a toll on the patient’s health
• Suppose we can pay some cost to change attributes

• For all q, q’ in Q, let
c : Q x Q à R be cost of flipping qà q’

• Flip-and-Cover: maximize match size minus cost of flips
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Given constant L and |Q|, 
the Flip-and-Cover problem is in polynomial time
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A CONCRETE INSTANTIATION: 
THRESHOLDING
• Associate with each patient and donor a k-bit vector

• Count “conflict bits” that overlap at same position
• If more than threshold t conflict bits, don’t draw an edge

• Example: k = 2, blood containing antigens A and B
• Q = 2{ has-A, has-B } x 2{ no-A, no-B } 

• Draw edge if <di, pj> ≤ t; do not draw edge otherwise
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Donor 
blood type

Patient 
blood type

Donor type A = [ 1, 0 ]
Patient type AB = [ 0, 0 ]

Donor type A = [ 1, 0 ]
Patient type O = [ 1, 1 ]

Related to intersection graphs:
Each vertex has a set; draw edge between vertices iff

sets intersect (by at least p elements)

A
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UPPER BOUND: SOMETIMES 
YOU NEED LOTS OF BITS
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For any n > 2, there exists a graph on n vertices 
that is not (k,0)-representable for all k < n

T
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For each vertex i, draw edge to each vertex 
except vertices i-1 and i
BWOC assume (k,0)-representable, k < n:
• Consider vertex 1
• (1, n) not in E; (1, i) in E otherwise
• Then there is a conflict bit between vertex 1 

and n that is not “turned on” anywhere else
• Do for n vertices à require k ≥ n

1 2

6 3

5 4



HARDNESS: HOW MANY BITS 
DO I NEED FOR THIS GRAPH?
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The (k,t)-representation problem is NP-complete
(proof via reduction from 3SAT)

T
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Given: an input graph G = (V, E)
subset F of C(V, 2)

fixed positive k, nonnegative t
Does there exist:

k-length bit vectors di, pi for all vi in V
such that for (i,j) in F, also (i,j) in E iff <di,pj> ≤ t



COMPUTING 
(K,T)-REPRESENTATIONS: QCP

• Quadratically-constrained discrete feasibility program:
• Constraint matrix not positive semi-definite à non-convex 

• State-of-the-art nonlinear solvers (e.g., Bonmin) fail

47

[Bonami et al. 2008]

For each vertex, give k bits to the patient and k bits to the donor 

If an edge exists in the graph, assert the source donor vector and sink patient 
vector overlap by at most t

If an edge does not exist, make sure the overlap is greater than t



COMPUTING 
(K,T)-REPRESENTATIONS: IP

• Integer program minimizes number of “conflict edges”
• CPLEX struggles to find non-trivial solutions
• CPLEX cannot find feasible solution (when forcing all xij = 0)
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COMPUTING 
(K,0)-REPRESENTATIONS: SAT

• When t = 0, can use a compact SAT formulation
• Interesting because it closely mimics real life

• We can solve small- and medium-sized graphs 
• Use Lingeling, a good parallel SAT solver [Biere 2014]
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Specific case of t = 0: if an edge exists, allow no overlap

Specific case of t = 0: if an edge does not exist, force any overlap
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CAN WE REPRESENT REAL GRAPHS 
WITH A SMALL NUMBER OF BITS?

Bigger real-world graphs (UNOS 2010 – 2012)

Theory: k
= |V|

Proved SAT

Proved UNSAT

Unknown (?)



RELAXING THE THRESHOLD
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Loosen bit threshold t on real UNOS graphs 

3x pairs matched!
(1-bit overlap allowed)

Everyone matched!*
(4-bit overlap allowed)

*all bits created 
equal, and not 
actually flipping 
bits – just relaxing 
global threshold



NEXT CLASS:
DYNAMIC OPTIMIZATION
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