APPLIED MECHANISM DESIGN FOR SOCIAL GOOD

JOHN P DICKERSON

Lecture #14 - 03/13/2018

CMSC828M Tuesdays & Thursdays 9:30am – 10:45am

THIS CLASS: MANAGING SHORT-TERM UNCERTAINTY IN EXCHANGES (WITH SOME FAIRNESS)

THE CLEARING PROBLEM

The clearing problem is to find the "best" disjoint set of cycles of length at most *L*, and chains (maybe with a cap *K*)

- Last class: only considered static deterministic matching
- This class: matching under short-term uncertainty
- Next class: general long-term dynamic matching over time

MATCHED *≠* TRANSPLANTED

Only around 10% of UNOS matches resulted in an actual transplant

• Similarly low % in other exchanges [ATC 2013]

Many reasons for this. How to handle?

One way: encode *probability of transplantation* rather than just feasibility

• for individuals, cycles, chains, and full matchings

FAILURE-AWARE MODEL

Compatibility graph G

- Edge (v_i, v_j) if v_i 's donor can donate to v_j 's patient
- Weight w_e on each edge e

Success probability q_e for each edge e

Discounted utility of cycle c

FAILURE-AWARE MODEL

Discounted utility of a k-chain c

Cannot simply "reweight by failure probability"

OUR PROBLEM

Discounted clearing problem is to find matching *M*^{*} with highest discounted utility

• Utility of a match *M*: $u(M) = \sum u(c)$

"IN THE LARGE"

G(n, t(n), p): random graph with

- n patient-donor pairs
- t(n) altruistic donors
- Probability Θ(1/n) of incoming edges

Constant transplant success probability q

For all $q \in (0,1)$ and α , $\beta > 0$, given a large $G(n, \alpha n, \beta/n)$, w.h.p. there exists some matching M' s.t. for every maximum cardinality matching M,

 $u_q(M') \ge u_q(M) + \Omega(n)$

For every structure X of constant size, w.h.p. can find $\Omega(n)$ structures isomorphic to X and isolated from the rest of the graph

Label them (alt vs. pair): flip weighted coins, constant fraction are labeled correctly \rightarrow constant × $\Omega(n) = \Omega(n)$

Direct the edges: flip 50/50 coins, constant fraction are entirely directed correctly \rightarrow constant × $\Omega(n) = \Omega(n)$

In theory, we're losing out on expected actual transplants by maximizing match cardinality.

... What about in practice?

SOLVING THIS NEW PROBLEM

Real-world kidney exchanges are still small

Mostly around 300 donors and 300 patients

The restricted **discounted** maximum cycle cover problem is NP-hard.

Undiscounted clearing problem is NP-hard when cycle/chain cap $L \ge 3$ (reduction from 3D-matching last class)

- Special case of our problem
- (Set success rate q = 1 for all edges)

WE CAN'T USE THE CURRENT SOLVER

Branch-and-bound IP solvers use upper and lower bounds to prune subtrees during search

Upper bound: cycle cover with no length cap

• (Last class: PTIME through max weighted perfect matching)

But now it is better to use shorter cycles instead of longer cycles to cover the same set of vertices ...

WE CAN'T USE THE CURRENT SOLVER

T H E O R E M

The unrestricted **discounted** maximum cycle cover problem is NP-hard.

Reduce from 3D-matching, like last class. Intuition:

- 3-cycles are better than L-cycles, for L>3
- Want the top (blue) vertices matched in 3-cycles, not L-cycles
- We showed this happens iff there is a 3D-matching

WE CAN USE PARTS OF THE CURRENT SOLVER

THEOREM

The restricted **discounted** maximum cycle cover problem is solvable in PTIME for *L*=2.

For all 2-cyles between *u* and *v* in the original graph, set corresponding undirected edge weight in translated graph to:

•
$$w_{e'} = q_{(u,v)} \bullet q_{(v,u)} \bullet (w_{(u,v)} + w_{(v,u)})$$

PRICING: CONSIDERING ONLY "GOOD" CHAINS

Given a chain *c*, any extension *c*' will not be needed in an optimal solution if the infinite extension has non-positive value

SCALABILITY EXPERIMENTS

	CPLEX	Ours	Ours without chain curtailing
10	127 / 128	128 / 128	128 / 128
25	125 / 128	128 / 128	128 / 128
50	105 / 128	128 / 128	125 / 128
75	91 / 128	126 / 128	123 / 128
100	1 / 128	121 / 128	121 / 128
150		114 / 128	95 / 128
200		113 / 128	76 / 128
250		94 / 128	48 / 128
500		107 / 128	1 / 128
700		115 / 128	
900		38 / 128	
1000			

- Runtime limited to 60 minutes; each instance given 8GB of RAM.
- |V| represents #patient-donor pairs; additionally, 0.1|V| altruistic donors are present.

In theory and practice, we're helping the *global* bottom line by considering post-match failure ...

... But can this hurt some *individuals*?

SENSITIZATION AT UNOS

Highly-sensitized patients: unlikely to be compatible with a random donor

- Deceased donor waitlist: 15%-20%
- Kidney exchanges: much ۲ higher (60%+)

RECALL: PRICE OF FAIRNESS

Efficiency vs. fairness:

- Utilitarian objectives may favor certain classes at the expense of marginalizing others
- Fair objectives may sacrifice efficiency in the name of egalitarianism

Price of fairness: relative system efficiency loss under a fair allocation [Bertismas, Farias, Trichakis 2011] [Caragiannis et al. 2009]

PRICE OF FAIRNESS IN KIDNEY EXCHANGE

Want a matching M^* that maximizes utility function $u: \mathcal{M} \to \mathbb{R}$

$$M^* = \operatorname*{argmax}_{M \in \mathcal{M}} u(M)$$

Price of fairness: relative loss of match **efficiency** due to **fair** utility function u_f :

$$POF(\mathcal{M}, u_f) = \frac{u(M^*) - u(M_f^*)}{u(M^*)}$$

FROM THEORY TO PRACTICE

Last class, we saw that the price of fairness is low in theory

$$POF(\mathcal{M}, u_{H \succ L}) \leq \frac{2}{33}$$

Fairness criterion: extremely strict.

Theoretical assumptions (standard):

- Big, dense graphs (" $n \rightarrow \infty$ ")
- Cycles (no chains)
- No post-match failures
- Simplified patient-donor features

What about the price of fairness *in practice*?

TOWARD USABLE FAIRNESS RULES

In healthcare, important to work within (or near to) the constraints of the fielded system

- [Bertsimas, Farias, Trichakis 2013]
- Experience working with UNOS

We now present two (simple, intuitive) rules:

- Lexicographic: strict ordering over vertex types
- Weighted: implementation of "priority points"

LEXICOGRAPHIC FAIRNESS

Find the best match that includes at least α fraction of highly-sensitized patients

Matching-wide constraint:

- Present-day branch-and-price IP solvers rely on an "easy" way to solve the pricing problem
- Lexicographic constraints → pricing problem requires an IP solve, too!

Strong guarantee on match composition ...

• ... but harder to predict effect on economic efficiency

WEIGHTED FAIRNESS

Value matching a highly-sensitized patient at $(1+\beta)$ that of a lowly-sensitized patient, $\beta>0$

Re-weighting is a preprocess \rightarrow

works with all present-day exchange solvers

Difficult to find a "good" β ?

• Empirical exploration helps strike a balance

THEORY VS. "PRACTICE" LEXICOGRAPHIC FAIRNESS

PRICE OF FAIRNESS: GENERATED DATA

Size	Saidman (US)	Saidman (UNOS)	Heterogeneous
10	0.24% (1.98%)	0.00% (0.00%)	0.98% (5.27%)
25	0.58% (1.90%)	0.19% (1.75%)	0.00% (0.00%)
50	1.18% (2.34%)	1.96% (6.69%)	0.00% (0.00%)
100	1.46% (1.80%)	1.66% (3.64%)	0.00% (0.00%)
150	1.20% (1.86%)	2.04% (2.51%)	0.00% (0.00%)
200	1.43% (2.08%)	1.55% (1.79%)	0.00% (0.00%)
250	0.80% (1.24%)	1.86% (1.63%)	0.00% (0.00%)
500	0.72% (0.74%)	1.67% (0.82%)	0.00% (0.00%)

Average (st.dev.) % loss in efficiency for three families of random graphs, under the strict lexicographic rule.

Good: aligns with the theory

Bad: standard generated models aren't realistic

UNOS RUNS LEXICOGRAPHIC FAIRNESS, VARYING FAILURE RATES

UNOS RUNS WEIGHTED FAIRNESS, VARYING FAILURE RATES

CONTRADICTORY GOALS

Earlier, we saw failure-aware matching results in tremendous gains in #expected transplants

Gain comes at a price – may further marginalize hard-tomatch patients because:

- Highly-sensitized patients tend to be matched in chains
- Highly-sensitized patients may have higher failure rates (in APD data, not in UNOS data)

UNOS runs, weighted fairness, constant probability of failure (x-axis), increase in expected transplants over deterministic matching (y-axis)

Can we be more proactive in this balancing act?

PRE-MATCH EDGE TESTING

Idea: perform a small amount of costly testing before a match run to test for (non)existence of edges

• E.g., more extensive medical testing, donor interviews, surgeon interviews, ...

Cast as a stochastic matching (or set packing) problem:

Given a graph G(V,E), choose subset of edges S such that:

$|\mathsf{M}(S)| \ge (1 - \varepsilon) |\mathsf{M}(E)|$

Need: "sparse" S, where every vertex has O(1) incident tested edges

GENERAL THEORETICAL RESULTS

Adaptive: select one edge per vertex per *round*, test, repeat

Stochastic matching: (1- ϵ) approximation with $O_{\epsilon}(1)$ queries per vertex, in $O_{\epsilon}(1)$ rounds 0

Stochastic k-set packing: $(2/k - \varepsilon)$ approximation with O_s(1) queries per vertex, in O_s(1) rounds

Non-adaptive: select O(1) edges per vertex, test all at once

Т Н

Ε

R E

Μ

Stochastic matching: $(0.5-\varepsilon)$ approximation with $O_{\varepsilon}(1)$ queries per vertex, in 1 round

Stochastic k-set packing: $(2/k - \epsilon)^2$ approximation with $O_{\epsilon}(1)$ queries per vertex, in 1 round

ADAPTIVE ALGORITHM

For R rounds, do:

- 1. Pick a max-cardinality matching *M* in graph *G*, minus already-queried edges that do not exist
- 2. Query all edges in M

INTUITION FOR ADAPTIVE ALGORITHM

If at any round *r*, the best solution on edges queried so far is small relative to omniscient ...

- ... then current structrure admits *large* number of unqueried, disjoint augmenting structures
- For *k*=2, aka normal matching, simply augmenting paths

Augmenting structures might not exist, but can query in parallel in a single round

- Structures are constant size \rightarrow exist with constant probability
- Structures are disjoint \rightarrow queries are independent
- \rightarrow Close a constant gap per round

Even 1 or 2 extra tests would result in a huge lift

NEXT CLASS: DYNAMIC OPTIMIZATION