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Introduction
P

roblem
: N

eed to try to convince a people to adopt a product/behavior

C
onstraints: Let’s say you have a lim

ited budget

A
pproach? 



H
istory

Traditional M
ethods:

●
M

ass M
arketing

●
D

irect M
arketing

C
ustom

ers don’t necessarily m
ake decisions in a vacuum



D
iffusion of ideas

S
ocial netw

orks play a fundam
ental role as a m

edium
 for the spread of inform

ation 

D
ynam

ics of adoption is im
portant

P
rior research w

ork in diffusion processes: 

-
“viral m

arketing” effects in the success of new
 products 

-
adoption of various strategies in gam

e theoretic settings 
-

cascading failures in pow
er system

s.



D
iffusion M

odels
A

ctivation of N
odes (U

sers) in a directed S
ocial N

etw
ork G

raph (G
)

M
odels considered:

●
Independent C

ascades

●
Linear Threshold 

Initial A
ssum

ption: P
rogressive



D
iffusion M

odels: Linear Threshold
(G

ranovetter and S
chelling)

A
ctivation condition

M
odel P

aram
eters

●
E

dge w
eight b

v,w
  : N

eighbor influence

●
Threshold θ

v  : tendency to adopt 
innovation

D
iffusion proceeds in discrete tim

e steps:

●
S

elect initial set of active nodes A
0  

●
N

odes active at tim
e step t are also active 

at tim
e step t+1

●
C

heck activation condition and update 
state A

t  at every tim
e step 
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b
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b
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b
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A
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A
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D
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D
iffusion M

odels: Independent C
ascades

M
odel P

aram
eters

●
E

dge w
eight p

v,w
  : A

ctivation success 
probability 

D
iffusion proceeds in discrete tim

e steps:

●
S

elect initial set of active nodes A
0  

●
N

odes active at tim
e step t are also active 

at tim
e step t+1

●
A

ctive node v given a single chance to 
activate neighbor w

●
M

ultiple neighbors’ attem
pted sequenced 

in random
 order
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p
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D
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Influence M
axim

ization P
roblem

D
om

ingos-R
ichardson fram

ew
ork: Find a k-node subset A

0  of m
axim

um
 influence 

σ(A
0 )

Q
uestions:

●
H

ow
 is influence defined?

●
W

hat is a subm
odular function?

●
W

hy is this im
portant?

TH
IS

 IS
 N

P
-H

A
R

D
!



P
aper C

ontributions
●

First provable approxim
ation guarantee to w

ithin a factor of (1 - 1/e - ᷑)

●
E

xperim
ental validation: C

om
parison w

ith popular heuristics 

●
E

xtensions 

○
G

eneral Fram
ew

ork

○
C

om
plex M

arketing A
ctions

○
N

on-P
rogressive

A
 general approach for reasoning about the perform

ance guarantees of algorithm
s 

for these types of influence problem
s in social netw

ork



A
pproxim

ation G
uarantees

W
e w

ant to find k-elem
ent set A

0  for w
hich σ(A

0 ) is m
axim

ized

TH
EO

R
EM

: For a non-negative, m
onotone subm

odular function σ, let S
 be a set 

of size k obtained by selecting elem
ents one at a tim

e, each tim
e choosing an 

elem
ent that provides the largest m

arginal increase in the function value. Let S
∗ be 

a set that m
axim

izes the value of f over all k-elem
ent sets. 

Then σ(S
) ≥ (1−1/e) ·σ(S

∗); in other w
ords, S

 provides a (1−1/e) approxim
ation. 

(N
em

hauser, W
olsey, Fisher, 78)

Influence function σ subm
odularity proof?



A
pproxim

ation G
uarantees

A
ssum

ptions:

●
σ is non-negative

●
S

ubm
odular function: σ(S

 ∪
 {v}) − σ(S

) ≥ σ(T ∪
 {v}) − σ(T)

●
M

onotone: σ(S
 ∪

 {v}) ≥ σ(S
)



S
ubm

odularity: Independent C
ascades

P
re-flip coins for each pair of nodes (v,w

) using p
v,w

 

●
X

: S
tate of edges (live/blocked) 

●
R

(v,X
): S

et of nodes w
ith live-edge paths from

 x
●

σ
x (S

 ∪
 {v}) − σ

X (S
) = R

(v,X
) - 

●
σ

X (S
 ∪

 {v}) − σ
X (S

) ≥ σ
X (T ∪

 {v}) − σ
X (T)



N
P

-H
ardness: Independent C

ascades
R

educe to set-cover problem

●
S

ets X
1 ,...,X

m
●

N
odes u

1 ,...,u
n

●
E

dge betw
een X

i  and u
j  if u

j  in X
i

●
S

et of k nodes A
 σ(A

) >= n+k

O
ptim

ization is N
P

-H
ard



S
ubm

odularity P
roof: Linear Threshold

S
lightly m

ore com
plicated: A

ctivation dependent on aggregate

Trigger G
raph M

odel: P
ick a live incom

ing edge for each node v using b
v,w  . 

●
X

: S
tate of edges (live/blocked) 

●
R

(v,X
): S

et of nodes w
ith live-edge paths from

 x

C
laim

: Trigger graph m
odel = Linear threshold m

odel



S
ubm

odularity P
roof: Linear Threshold

●
S

tate of m
odel is the pair (A

t-1 ,A
t )

●
S

how
 that transition probabilities betw

een states are sam
e in both m

odels
●

B
oth m

odels start in sam
e state

●
D

istribution over states is alw
ays identical

●
P

r(v becom
es active at tim

e = t+1) 
○

In m
odel 1: C

hance that influence w
eights in A

t  \ A
t-1  push it over threshold given not already 

exceeded.
○

In m
odel 2: C

hance that its live edge com
es from

 A
t  \ A

t-1  and not A
t-1, A

t-2  ,..., A
0

○
In both cases it is the sam

e: 



N
P

-H
ardness: Linear Threshold

S
how

 to be equivalent to vertex-cover problem

O
ptim

ization is N
P

-H
ard



E
xperim

ental R
esults

R
un on co-authorship netw

ork from
 the com

plete list of papers in the high energy 
physics theory section of the e-print arX

iv (2003)

10748 nodes (researchers), and 53000 edges (co-authorship)

G
reedy A

lgorithm
 V

S
 

-
S

tructural m
easures

-
D

egree C
entrality

-
D

istance C
entrality

-
R

andom
 selection



E
xperim

ental R
esults

●
Linear Threshold M

odel: m
ultiplicity of edges as w

eights. W
eight of edge 

(u→
v) = C

uv  / d
u

●
Independent C

ascade M
odel:

○
C

ase 1: uniform
 probabilities p on each edge (parallel edges?)

○
C

ase 2: edge from
 u to v has probability 1/ d

v  of activating v.

For σ(A
): S

im
ulate the process 10000 tim

es for each targeted set, re-choosing 
thresholds or edge outcom

es pseudo-random
ly from

 [0, 1] every tim
e



Linear Threshold M
odel

G
reedy algorithm

 outperform
s 

●
D

egree centrality node 
heuristic by about 18%

●
D

istance centrality heuristic 
by over 40%



Independent C
ascade M

odel: C
ase 2



Independent C
ascade M

odel : C
ase 1



G
eneralizations of D

iffusion M
odels

●
G

eneralized threshold
○

D
efine m

onotone threshold function fv (S
) such that node v is activated for fv (S

) ≥ θ
v  

○
Linear Threshold: 

●
G

eneral cascade
○

D
efine success probability probability p

v (u, S
)

○
Independent cascade p

v,u  independent of S

These can be show
n to be equivalent

N
P

-hard to approxim
ate in general



N
on-progressive processes

●
N

odes can sw
itch back to inactivity

●
C

an be reduced to progressive case
●

k interventions rather than k nodes

Theorem
: The non-progressive influence m

axim
ization problem

 on G
 over a tim

e 
horizon τ is equivalent to the progressive influence m

axim
ization problem

 on the 
layered graph G

τ . N
ode v is active at tim

e t in the non-progressive process if and 
only if v

t  is activated in the progressive process.



G
eneral M

arketing S
trategies

●
m

:  #m
arketing actions M

i
●

D
ifferent nodes m

ay respond to m
arketing actions in different w

ays
●

M
arketing strategy vector x

●
h

v (x) : probability that node v is activated by strategy x
○

N
on-decreasing

○
s



G
eneral M

arketing S
trategies

E
xpected revenue from

 final activated set σ(A
)

M
axim

ize this using a hill-clim
bing algorithm

TH
E

O
R

E
M

 6.1. W
hen the hill-clim

bing algorithm
 finishes w

ith strategy x, it 
guarantees that g(x) ≥ (1 − e − k·γ k+δ·n ) · g(xˆ), w

here xˆ denotes the optim
al 

solution subject to P
 i xˆi ≤ k



Q
uestions?


