Maximizing the Spread of Influence through a Social Network

Kempe, Kleinberg, and Tardos (2003)
Paper Overview

- Marketing Strategies
- Non-Progressive Processes
- Generalization
- Experimental Results
 - Efficient Approximation
 - Example Network
 - Diffusion Models (Assumptions)
- Approach
- Paper Contributions
- Diffusion Models
- History
- Introduction
Introduction

Problem: Need to try to convince a people to adopt a product/behavior

Constraints: Let's say you have a limited budget

Approach:
Customers don’t necessarily make decisions in a vacuum.

Traditional Methods:

- Mass Marketing
- Direct Marketing
- Traditional Methods
Diffusion of ideas

Social networks play a fundamental role as a medium for the spread of information.

Dynamics of adoption is important.

Prior research work in diffusion processes:
- "Viral marketing" effects in the success of new products.
- Cascading failures in power systems.
- Adoption of various strategies in game theoretic settings.

Social networks play a fundamental role in the spread of information.

Diffusion of Ideas.
Activation of Nodes (Users) in a Directed Social Network Graph (G)

Initial Assumption: Progressive

• Linear Threshold
• Independent Cascades

Models Considered:

Diffusion Models
Diffusion models: linear threshold

Granovetter and Schelling

Model parameters:

- Edge weight \(w \) : Neighbor influence
- Threshold \(\theta \) : Tendency to adopt innovation

Diffusion proceeds in discrete time steps:

- Select initial set of active nodes \(A^0 \)
- Nodes active at time step \(t \) are also active at time step \(t + 1 \)
- At time step \(t + 1 \), check activation condition and update state \(A^t \)

Activation condition:

\[
\sum_{n \in \text{neighbor of } v} \theta^v \leq w_{v,n} \Rightarrow v \in A^{t+1}
\]
Stop!

Diffusion Models: Linear Threshold

Inactive Node
Active Node
Active neighbors
Threshold
Diffusion proceeds in discrete time steps:

- Select initial set of active nodes A^0
- Nodes active at time step $t+1$ are also active

 - Active node v given a single chance to activate neighbor w

 - Multiple neighbors attempted, sequenced in random order:
 - $p_{1,2}$
 - $p_{1,3}$
 - $p_{3,4}$

Diffusion proceeds in discrete time steps.

Model Parameters:

- Edge weight $p_{v,w}$: Activation success probability

Multiple neighbors attempted, sequenced in random order:

- Activate neighbor w
Diffusion Models: Independent Cascades

Stop!

Unsuccessful attempt
Successful node
Newly active
Active Node
Inactive Node
Influence Maximization Problem

Domingos-Richardson framework: Find a k-node subset A^0 of maximum influence

Questions:
- Why is this important?
- What is a submodular function?
- How is influence defined?

THIS IS NP-HARD!
Paper Contributions

A general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.

- First provable approximation guarantee to within a factor of \(\frac{1}{1 - \frac{1}{\epsilon}} \)
- Experimental validation: Comparison with popular heuristics
- Extensions:
 - Non-Progressive
 - Complex Marketing Actions
 - General Framework

Extensions:

- Experimental validation: Comparison with popular heuristics
- First provable approximation guarantee to within a factor of \(\frac{1}{1 - \frac{1}{\epsilon}} \)
Approximation Guarantees

We want to find a k-element set A^* for which $\sigma(A^*)$ is maximized.

Theorem: For a non-negative, monotone submodular function σ, let S be a set of size k obtained by selecting elements one at a time, each time choosing an element that provides the largest marginal increase in the function value. Let S^* be a set that maximizes the value of σ over all k-element sets. Then $\sigma(S) \geq (1 - 1/e) \cdot \sigma(S^*)$; in other words, S provides a $(1 - 1/e)$ approximation.

(Nemhauser, Wolsey, Fisher, 78)

Influence function σ submodularity proof?
Approximation Guarantees

Assumptions:

- \(\sigma \) is non-negative
- Submodular function:
 \[
 \sigma(S \cup \{v\}) - \sigma(S) \geq \sigma(T \cup \{v\}) - \sigma(T)
 \]
- Monotone:
 \[
 \sigma(S \cup \{v\}) \geq \sigma(S)
 \]

\(\sigma \) is non-negative

Approximation Guarantees
Submodularity: Independent Cascades

Pre-flip coins for each pair of nodes (v, w) using $p^{v \cap w}$.

\[
(\forall) x^v \cdot \mathbb{P}[v] \bigcap_{x^v} = (\forall)^v
\]

\[
(1)^x - (\{\} \cup S)^x \geq (s)^x - (\{\} \cup S)^x
\]

X': Set of nodes with live-edge paths from x

$X \cap R$ = $(s)^x - (\{\} \cup S)^x$

R^x = set of edges (live/blinked)

X: State of edges (live/blinked)

R^x: Set of nodes with live-edge paths from x

(\forall)^x$ - (\{\} \cup T)^x \geq (s)^x - (\{\} \cup S)^x$
NP-Hardness: Independent Cascades

Optimization is NP-Hard

Set of k nodes A $\sigma(A) \geq n+k$

Edge between x' and u_j if u_j in x'

Nodes u_1, \ldots, u_n

Sets X_1, \ldots, X_m

Reduce to set-cover problem

NP-Hardness: Independent Cascades
Claim: Trigger graph model = Linear threshold model

- $R(v, X)$: Set of nodes with live-edge paths from x
- X: State of edges (live/blocked)

Trigger Graph Model: Pick a live incoming edge for each node v using b_v.

Slightly more complicated: Activation dependent on aggregate

Submodularity Proof: Linear Threshold
Submodularity Proof: Linear Threshold

State of model is the pair \((A_{t-1}, A_t)\)

Show that transition probabilities between states are same in both models:

- In both cases it is the same:
 - \(Pr(v \text{ becomes active at time } = t+1)\)
 - Distribution over states is always identical
 - Both models start in same state
 - State of model is the pair \((A_{t-1}, A_t)\)
NP-Hardness: Linear Threshold

Show to be equivalent to vertex-cover problem

Optimization is NP-Hard

NP-Hardness: Linear Threshold
Experimental Results

Run on co-authorship network from the complete list of papers in the high energy physics theory section of the e-print arXiv (2003)

10748 nodes (researchers), and 53000 edges (co-authorship)

Random selection - Greedy Algorithm VS
- Degree Centrality
- Distance Centrality
- Structural measures

Run on co-authorship network from the complete list of papers in the high energy physics theory section of the e-print arXiv (2003)
Experimental Results

- Linear Threshold Model: multiplicity of edges as weights. Weight of edge $(u \rightarrow v) = \frac{C_{uv}}{d_u}$.
- Independent Cascade Model:
 - Case 1: uniform probabilities p on each edge (parallel edges?)
 - Case 2: edge from u to v has probability $\frac{1}{d_v}$ of activating v.

For $\sigma(A)$: Simulate the process 10000 times for each targeted set, re-choosing thresholds or edge outcomes pseudo-randomly from $[0, 1]$ every time.
Greedy algorithm outperforms
Degree centrality node
by over 40%
Distance centrality heuristic
by about 18%
Independent Cascade Model: Case 2
Independent Cascade Model: Case 1
Generalizations of Diffusion Models

- Generalized threshold
 - Define monotone threshold function \(f^v(S) \) such that node \(v \) is activated for \(f^v(S) \geq \theta^v \)

- Linear Threshold:
 - Define success probability \(p^v(u, S) \)
 - Independent cascade \(p^v(u, S) \) independent of \(S \)

These can be shown to be equivalent NP-hard to approximate in general

- General cascade
 - Independent cascade \(p^v(u, S) \)

- Linear Threshold:
 - \(f^v(S) \) such that node \(v \) is activated for \(f^v(S) \geq \theta^v \)

- Generalized threshold
Non-progressive processes

Nodes can switch back to inactivity

Can be reduced to progressive case

Nodes can switch back to inactivity

Theorem: The non-progressive influence maximization problem on G over a time horizon T is equivalent to the progressive influence maximization problem on the layered graph G_T. Node v is active at time t in the non-progressive process if and only if it is activated in the progressive process.
General Marketing Strategies

- Different nodes may respond to marketing actions in different ways.
- Marketing strategy vector \mathbf{x}
- Probability that node v is activated by strategy \mathbf{y}

$(\mathbf{y})^\mathbf{a} - (\mathbf{v} + \mathbf{y})^\mathbf{a} \leq (\mathbf{x})^\mathbf{a} - (\mathbf{v} + \mathbf{x})^\mathbf{a}$

Non-decreasing

m: #marketing actions
Maximize this using a hill-climbing algorithm:

\[((x)^{n_{\eta}} - 1)^{\prod_{a}^{n_{\eta}}} \prod_{a}^{\eta} \prod_{x}{\bigwedge_{A}} = (x)^{6} \]

Expected Revenue from Final Activated Set \(A \)
Questions?