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Introduction

Problem: Need to try to convince a people to adopt a product/behavior
Constraints: Let’s say you have a limited budget

Approach?




History

Traditional Methods:

e Mass Marketing
e Direct Marketing

Customers don’t necessarily make decisions in a vacuum



Diffusion of ideas

Social networks play a fundamental role as a medium for the spread of information
Dynamics of adoption is important
Prior research work in diffusion processes:

- ‘“viral marketing” effects in the success of new products
- adoption of various strategies in game theoretic settings
- cascading failures in power systems.



Diffusion Models

Activation of Nodes (Users) in a directed Social Network Graph (G)
Models considered:
e Independent Cascades

e Linear Threshold

Initial Assumption: Progressive



Diffusion Models: Linear Threshold

. Model Parameters
(Granovetter and Schelling)

e Edge weight oss : Neighbor influence

e Threshold 6, : tendency to adopt
innovation

Diffusion proceeds in discrete time steps:

w neighbor of v

o . e Select initial set of active nodes >o
Activation condition

>, buw = Ou.

w active neighbor of v

e Nodes active at time step t are also active
at time step t+1

e Check activation condition and update
state A, at every time step



Diffusion Models: Linear Threshold
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Diffusion Models: Independent Cascades

Diffusion proceeds in discrete time steps:

e Select initial set of active nodes >Q

e Nodes active at time step t are also active
at time step t+1

e Active node v given a single chance to
activate neighbor w

e Multiple neighbors’ attempted sequenced

Model Parameters in random order

e Edge weightp  : Activation success
probability ,



Diffusion Models: Independent Cascades
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Influence Maximization Problem

Domingos-Richardson framework: Find a k-node subset A, of maximum influence
o(A,)

Questions:

e How is influence defined?
e \What is a submodular function?
e \Why is this important?

THIS IS NP-HARD!



Paper Contributions

e First provable approximation guarantee to within a factor of (1 - 1/e - &)
e EXxperimental validation: Comparison with popular heuristics

e Extensions
o General Framework
o Complex Marketing Actions

o Non-Progressive

A general approach for reasoning about the performance guarantees of algorithms
for these types of influence problems in social network



Approximation Guarantees

We want to find k-element set A for which o(A ) is maximized

THEOREM: For a non-negative, monotone submodular function o, let S be a set
of size k obtained by selecting elements one at a time, each time choosing an
element that provides the largest marginal increase in the function value. Let S* be
a set that maximizes the value of f over all k-element sets.

Then o(S) = (1-1/e) -o(S™); in other words, S provides a (1-1/e) approximation.
(Nemhauser, Wolsey, Fisher, 78)

Influence function o submodularity proof?



Approximation Guarantees

Assumptions:

e (IS non-negative
e Submodular function: a(S U {v}) = o(S) 2 o(T U {v}) - o(T)
e Monotone: o(S U {v}) 2 a(S)



Submodularity: Independent Cascades

Pre-flip coins for each pair of nodes (v,w) using p

e X: State of edges (live/blocked)
e R(v,X): Set of nodes with live-edge paths from x (- O
e 0 (S U {v})-0,(S)=R(V,XUyesR(u, X)

o 0(SU{v})-0,(S)20(T U {v}) -0 T)

0.2

oc(4) = Y Prob[X]-ox(A)

outcomes X




NP-Hardness: Independent Cascades

Reduce to set-cover problem

Sets X.,....X

Nodes u,,...,u_

Edge between X. and u, if u, in X
Set of k nodes A o(A) >= n+k

Optimization is NP-Hard

X1 1
y O uq
X, @ P
X; @ } -
¥ @ Us



Submodularity Proof: Linear Threshold

Slightly more complicated: Activation dependent on aggregate
Trigger Graph Model: Pick a live incoming edge for each node v using b, .

e X: State of edges (live/blocked)
e R(v,X): Set of nodes with live-edge paths from x

Claim: Trigger graph model = Linear threshold model



Submodularity Proof: Linear Threshold

State of model is the pair (A_,,A))

Show that transition probabilities between states are same in both models
Both models start in same state

Distribution over states is always identical

Pr(v becomes active at time = t+1)
o Inmodel 1: Chance that influence weights in A \ A _, push it over threshold given not already
exceeded.
o Inmodel 2: Chance that its live edge comes from A\ A _ and notA_ A, ..., A
o In both cases it is the same:

0

Mgm\w»/\wnl.— @CMC
H . Mﬁ.m\wnlp @e,.:.




NP-Hardness: Linear Threshold

Show to be equivalent to vertex-cover problem

Optimization is NP-Hard



Experimental Results

Run on co-authorship network from the complete list of papers in the high energy
physics theory section of the e-print arXiv (2003)

10748 nodes (researchers), and 53000 edges (co-authorship)
Greedy Algorithm VS
- Structural measures

- Degree Centrality
- Distance Centrality

- Random selection



Experimental Results

e Linear Threshold Model: multiplicity of edges as weights. Weight of edge
(u—v)=C_ /d,
e Independent Cascade Model:

o Case 1: uniform probabilities p on each edge (parallel edges?)
o Case 2: edge from u to v has probability 1/ d  of activating v.

For o(A): Simulate the process 10000 times for each targeted set, re-choosing
thresholds or edge outcomes pseudo-randomly from [0, 1] every time



Linear Threshold Model
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Independent Cascade Model: Case 2
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Independent Cascade Model : Case 1
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Generalizations of Diffusion Models

e Generalized threshold

o  Define monotone threshold function f (S) such that node v is activated for f (S) 2 6,
o Linear Threshold: 3, bow > .

e Generalcascade =

o Define success probability probability p (u, S)
o Independent cascade P, . independent of S

These can be shown to be equivalent

NP-hard to approximate in general



Non-progressive processes

e Nodes can switch back to inactivity
e Can be reduced to progressive case
e Kk interventions rather than k nodes

Theorem: The non-progressive influence maximization problem on G over a time
horizon 71 is equivalent to the progressive influence maximization problem on the
layered graph Gt . Node v is active at time t in the non-progressive process if and
only if v, is activated in the progressive process.



General Marketing Strategies

m: #marketing actions M.

Different nodes may respond to marketing actions in different ways
Marketing strategy vector x

h (x) : probability that node v is activated by strategy x

o Non-decreasing
0 hu(x+a)—hy(x) < hu(y+a)—h(y)



General Marketing Strategies

Expected revenue from final activated set o(A)

g(x) = MU»m< o(A) - [Tuea hu(x)- zcmbﬁ — hy(x)).
Maximize this using a hill-climbing algorithm

THEOREM 6.1. When the hill-climbing algorithm finishes with strategy x, it
guarantees that g(x) 2 (1 — e - k-y k+d-n ) - g(x"), where x" denotes the optimal
solution subjectto P i X"i < k



Questions?



