Submodular Optimization

Nathaniel Grammel

N. Grammel Submodular Optimization

Submodularity

@ Captures the notion of Diminishing Returns

Suppose U is a set. A set function : 2Y — R is submodular if for
any S, T C U:

f(SNT)+f(SUT)ZF(S)+(T)

N. Grammel Submodular Optimization

Submodularity

@ Captures the notion of Diminishing Returns

Suppose U is a set. A set function : 2Y — R is submodular if for
any S, T C U:

f(SNT)+f(SUT)ZF(S)+(T)

@ How does this represent diminishing returns?

N. Grammel Submodular Optimization

Submodularity

@ Captures the notion of Diminishing Returns

Suppose U is a set. A set function : 2Y — R is submodular if for
any S, T C U:

f(SNT)+f(SUT)ZF(S)+(T)

@ How does this represent diminishing returns?

@ Equivalent Definition:

A function f: 2Y — R is submodular if for any S, T C U such that
SCT,andany x € U\ T:

F(TU{x}) = f(T) < F(SU{x}) = f(5)

N. Grammel Submodular Optimization

Submodularity and Diminishing Returns

@ Imagine choosing items from U one by one
@ At any point, let S be the set of items chosen so far

@ Choosing x as the next item gives an increase in utility of

F(SU{x}) = f(5)

N. Grammel Submodular Optimization

Submodularity and Diminishing Returns

@ Imagine choosing items from U one by one

@ At any point, let S be the set of items chosen so far

@ Choosing x as the next item gives an increase in utility of
F(SU{x}) = £(5)

@ If we choose some other items first to get a set T (notice:
S C T), and then choose x, the increase in utility is

F(TUix}) = F(T) < F(SU{x}) = f(S5)

N. Grammel Submodular Optimization

Submodularity and Diminishing Returns

@ Imagine choosing items from U one by one

@ At any point, let S be the set of items chosen so far

@ Choosing x as the next item gives an increase in utility of
F(SU{x}) = £(5)

@ If we choose some other items first to get a set T (notice:
S C T), and then choose x, the increase in utility is

F(TU{x}) = f(T) < f(SU{x}) - £(5)
@ Adding x give less utility if we start with more

N. Grammel Submodular Optimization

Submodularity and Diminishing Returns

Imagine choosing items from U one by one

At any point, let S be the set of items chosen so far

Choosing x as the next item gives an increase in utility of

F(SU{x}) = f(5)

If we choose some other items first to get a set T (notice:
S C T), and then choose x, the increase in utility is

F(TU{x}) = f(T) < f(SU{x}) - £(5)
Adding x give less utility if we start with more
e This is the concept of diminishing returns

N. Grammel

Submodular Optimization

Monotonicity: Another Useful Property

A set function f: 2Y — R is monotone if for every S, T C U with
SCT:
f(S) < f(T)

N. Grammel Submodular Optimization

Monotonicity: Another Useful Property

A set function f: 2Y — R is monotone if for every S, T C U with

SCT:
f(S) < f(T)

We are generally interested in monotone submodular functions.
Often, these are utility functions.

N. Grammel Submodular Optimization

A Concrete Example

@ Recall this example utility function from early in the semester:

f({apple, orange}) =5
f({apple}) = f({orange}) = 3
fli}) =f(2) =0

@ Notice it 1Is monotone submodular!

N. Grammel Submodular Optimization

Why do we care?

@ Diminishing Returns

N. Grammel Submodular Optimization

Why do we care?

@ Diminishing Returns

@ Closely Related to Convexity and Concavity

N. Grammel Submodular Optimization

Why do we care?

@ Diminishing Returns
@ Closely Related to Convexity and Concavity

e Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

N. Grammel Submodular Optimization

Why do we care?

@ Diminishing Returns
@ Closely Related to Convexity and Concavity

e Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

@ But with submodularity, we can make strong guarantees:
efficient algorithms for close approximations.

N. Grammel Submodular Optimization

Why do we care?

@ Diminishing Returns
@ Closely Related to Convexity and Concavity

e Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

@ But with submodularity, we can make strong guarantees:
efficient algorithms for close approximations.

@ Many natural functions have these properties

N. Grammel Submodular Optimization

Why do we care?

@ Diminishing Returns
@ Closely Related to Convexity and Concavity

e Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

@ But with submodularity, we can make strong guarantees:
efficient algorithms for close approximations.

@ Many natural functions have these properties
o Inferring Influence in a Network (Stay tuned!)

N. Grammel Submodular Optimization

Why do we care?

@ Diminishing Returns
@ Closely Related to Convexity and Concavity

e Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

@ But with submodularity, we can make strong guarantees:
efficient algorithms for close approximations.
@ Many natural functions have these properties

o Inferring Influence in a Network (Stay tuned!)
e Determining representative sentences in a document

N. Grammel Submodular Optimization

Why do we care?

@ Diminishing Returns
@ Closely Related to Convexity and Concavity

e Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

@ But with submodularity, we can make strong guarantees:
efficient algorithms for close approximations.
@ Many natural functions have these properties

o Inferring Influence in a Network (Stay tuned!)
e Determining representative sentences in a document
e Many applications to image and signal processing.

N. Grammel Submodular Optimization

Why do we care?

@ Diminishing Returns
@ Closely Related to Convexity and Concavity

e Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

@ But with submodularity, we can make strong guarantees:
efficient algorithms for close approximations.

@ Many natural functions have these properties

o Inferring Influence in a Network (Stay tuned!)

e Determining representative sentences in a document
e Many applications to image and signal processing.

e Sensor Placement

N. Grammel Submodular Optimization

Why do we care?

@ Diminishing Returns
@ Closely Related to Convexity and Concavity

e Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

@ But with submodularity, we can make strong guarantees:
efficient algorithms for close approximations.

@ Many natural functions have these properties

o Inferring Influence in a Network (Stay tuned!)

e Determining representative sentences in a document
e Many applications to image and signal processing.

e Sensor Placement

e Graph Cuts

N. Grammel Submodular Optimization

Why do we care?

@ Diminishing Returns
@ Closely Related to Convexity and Concavity

e Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

@ But with submodularity, we can make strong guarantees:
efficient algorithms for close approximations.

@ Many natural functions have these properties

Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document
Many applications to image and signal processing.
Sensor Placement

Graph Cuts

(*)
(*)
o
(")
(*]
o And many more! (Check out submodularity.org)

N. Grammel Submodular Optimization

Submodular Optimization

@ Two main types of submodular optimization:

N. Grammel Submodular Optimization

Submodular Optimization

@ Two main types of submodular optimization:
@ Maximization

N. Grammel Submodular Optimization

Submodular Optimization

@ Two main types of submodular optimization:
@ Maximization

e Want to find S to maximize f(S) subject to some constraints
o Most simply: Want to find S that maximizes f(S) subject to
|S| = k for some k (cardinality constraint)

o More generally: Other types of constraints (e.g. knapsack
constraints, matroid constraints)

N. Grammel Submodular Optimization

Submodular Optimization

@ Two main types of submodular optimization:
@ Maximization

e Want to find S to maximize f(S) subject to some constraints
o Most simply: Want to find S that maximizes f(S) subject to
|S| = k for some k (cardinality constraint)

o More generally: Other types of constraints (e.g. knapsack
constraints, matroid constraints)

e Cover/Minimization

N. Grammel Submodular Optimization

Submodular Optimization

@ Two main types of submodular optimization:
@ Maximization

o Want to find S to maximize f(S) subject to some constraints
o Most simply: Want to find S that maximizes f(S) subject to
|S| = k for some k (cardinality constraint)

o More generally: Other types of constraints (e.g. knapsack
constraints, matroid constraints)
e Cover/Minimization

e Want to minimize the cost of covering f

e Most simply: Find S with minimum size that achieves
f(S) =f(U)

o More generally: Find S such that f(S) = f(U) while
minimizing cost(S) for some cost function.

N. Grammel Submodular Optimization

Submodular Maximization: The Simplest Case

@ Suppose we are given a utility function f: 2Y — R and a
cardinality constraing k

@ Goal: Find
S* = argmax f(S)
SCU:|S|<Lk
@ This is NP-hard in general!

@ What if f is submodular? Monotone? Nonnegative?
e We can find good near-optimal solutions!

N. Grammel Submodular Optimization

Submodular Maximization: A Simple Greedy Algorithm

@ Suppose f: 2Y — R is monotone submodular. Assume f is
nonnegative.

N. Grammel Submodular Optimization

Submodular Maximization: A Simple Greedy Algorithm

@ Suppose f: 2Y — R is monotone submodular. Assume f is
nonnegative.

e Start with S = {}

N. Grammel Submodular Optimization

Submodular Maximization: A Simple Greedy Algorithm

@ Suppose f: 2Y — R is monotone submodular. Assume f is
nonnegative.

e Start with S = {}

@ At each step, pick the item x € U\ S that maximizes
f(SU{x}) — f(S) (the item that maximizes the gain in
utility) and let S = S U {x}.

N. Grammel Submodular Optimization

Submodular Maximization: A Simple Greedy Algorithm

@ Suppose f: 2Y — R is monotone submodular. Assume f is
nonnegative.

e Start with S = {}

@ At each step, pick the item x € U\ S that maximizes
f(SU{x}) — f(S) (the item that maximizes the gain in
utility) and let S = S U {x}.

e Continue until |S| = k

N. Grammel Submodular Optimization

Submodular Maximization: A Simple Greedy Algorithm

@ Suppose f: 2Y — R is monotone submodular. Assume f is
nonnegative.

e Start with S = {}

@ At each step, pick the item x € U\ S that maximizes
f(SU{x}) — f(S) (the item that maximizes the gain in
utility) and let S = S U {x}.

e Continue until |S| = k

Theorem (Nemhauser et al. 1978)

Let S be the k-element set constructed as above, and let S* be
the set that maximizes f over all sets of size at most k. Then:

f(S)>(1—1/e)f(S)

N. Grammel Submodular Optimization

Submodular Maximization: A Simple Greedy Algorithm

@ Suppose f: 2Y — R is monotone submodular. Assume f is
nonnegative.

e Start with S = {}

@ At each step, pick the item x € U\ S that maximizes
f(SU{x}) — f(S) (the item that maximizes the gain in
utility) and let S = S U {x}.

e Continue until |S| = k

Theorem (Nemhauser et al. 1978)

Let S be the k-element set constructed as above, and let S* be
the set that maximizes f over all sets of size at most k. Then:

f(S)>(1—1/e)f(S)

@ Thus, the set S provides a (1 — 1/e)-approximation, and the
construction gives a polynomial-time approximation algorithm.

N. Grammel Submodular Optimization

Greedy Algorithm: Proof

For convenience, let As(x) = f(SU{x}) — f(S). Then
submodularity states that for S C T and x € U\ T, we have
A1(x) < As(x).

Let S; C U be the subset of / elements chosen greedily:

5,=5_U {arg max Asi_l(X)}

xeU
with 5S¢ = {}
Proof that f(S) > (1 —1/e)f(S%).

Due to monotonicity, |S*| = k. Let S* = {e1, er,..., ex}. Further,
also due to monotonicity, for any i < k:

f(S*) < f(STUS;) (1)

N. Grammel Submodular Optimization

Greedy Algorithm: Proof

Proof that £(S) > (1 — 1/e)f(S*).

We also have the following equality

k
F(STUS;) = f(Si)+ Z As.fer,...e_13(€) (1)

Jj=1

since the terms

ASiU{el,---,ej—l}(ej) = f(S, U {el, ceey ej}) — f(S, U {el, Ce ej_l})
are telescoping so the sum is equal to

f(Siu{er,....e}t)—f(SiU{}) =1(SiUS*)—f(S)). []

N. Grammel Submodular Optimization

Greedy Algorithm: Proof

Proof that f(S) > (1 —1/e)f(S*).

Due to submodularity, we have

k k
F(S)+ D Asufern,e13(e) < F(SH)+ D As(e) (1)

Jj=1 Jj=1

The greedy rule states that f(S;11) — f(Si) > As,(x) for any x.

Thus:
k k
F(Si)+) As(e) < F(S)+ > (F(Siv1) — F(S))
J=1 j=1
< £(5i) + k(f(Si+1) — (51)) (2)
where the second inequality holds since |S*| = k. []

N. Grammel Submodular Optimization

Greedy Algorithm: Proof

Proof that f(S) > (1 —1/e)f(S*).
Putting it all together:

F(S7) = £(Si) < k(f(Si+1) = £(Si)) (1)

Let 0; = f(S*) — f(S;). Then, we can rearrange to get
5,’ S k((s,' — 5,'_|_1), or (5,’+1 S 5,’ (1 — %) which yields

1 k
< N
pocso(1-1)

N. Grammel Submodular Optimization

Greedy Algorithm: Proof

Proof that f(S) > (1 —1/e)f(S*).

Since f is nonnegative, dp = f(S*) — f({}) < f(S*). A famous
inequality states: 1 — x < e ™ for all x € R. This yields

1* 1*
5ﬁ§@—;>5M§O—;)fﬁﬂ§€WW@ﬂ

Since d; = f(S5*) — f(Sk), we get

O = F(S*) — f(Sk) < e L (S*) (1)
f(S*) — e *(5%) < (Sk) (2)
F(S™)(1—1/e) < f(Sk) (3)

N. Grammel Submodular Optimization

(1 —1/e) is the best we can get

Theorem (Nemhauser and Wolsey 1978)

Any algorithm that evaluate f on at most a polynomial number of

inputs cannot do better than a (1 — 1/e)-approximation of the
optimal solution.

N. Grammel Submodular Optimization

Speedup with Lazy Evaluations (Minoux 1978)

e Evaluating Ags(x) for every x at each iteration may be costly

@ Store for each item x a value ¢(x), representing an upper
bound on Ag(x). Store the items sorted in order of ¢.

@ At each step, pick the element x at the front of the list (i.e.
with maximum ¢(x))

@ Lazy Evaluation: Evaluate Ag only for element x, and update
¢(x) + As(x).
o If after update, ¢(x) > ¢(x’) for all other x’, then x is still the

best choice for the greedy algorithm! We've avoided
re-evaluating A for all the other elements!

N. Grammel Submodular Optimization

Submodular Cover

@ Suppose instead we want to find $* so that f(S*) = f(U)
while minimizing |S*|.

@ Again, suppose f is monotone and submodular. But: this
time let f: 2Y — N.

@ Suppose we apply the same greedy rule until our constructed
set S has f(S) = f(U). Do we have bounds on |5|?

@ Yes!

Theorem (Wolsey 1982)

S| < (1+1np)[57]

where p = maxycy f({x}) is the maximum possible increase in
utility.

N. Grammel Submodular Optimization

What about non-uniform costs?

@ Up until now we have focused on cardinality: either
constrained to |S| < k (maximization), or trying to minimize

|S| (cover)

N. Grammel Submodular Optimization

What about non-uniform costs?

@ Up until now we have focused on cardinality: either
constrained to |S| < k (maximization), or trying to minimize

|S| (cover)

@ What if we instead have a cost function c(x) for all x € U
and want to maximize f(S) subject to

Zc(x) <B

x€eS

for some budget B. This is called a Knapsack Constraint.

N. Grammel Submodular Optimization

What about non-uniform costs?

@ Up until now we have focused on cardinality: either
constrained to |S| < k (maximization), or trying to minimize

|S| (cover)

@ What if we instead have a cost function c(x) for all x € U
and want to maximize f(S) subject to

ZC(X) <B

x€eS

for some budget B. This is called a Knapsack Constraint.

@ Or minimize) s c(x) such that S covers f (i.e.

£(S) = f(U))?

N. Grammel Submodular Optimization

Results for non-uniform costs

@ Standard Greedy Algorithm could be arbitrarily bad: Doesn't
consider costs at all!

N. Grammel Submodular Optimization

Results for non-uniform costs

@ Standard Greedy Algorithm could be arbitrarily bad: Doesn't
consider costs at all!

@ Modification: At each step, choose x that maximizes AC?)(:)() —
best “bang for the buck”

N. Grammel Submodular Optimization

Results for non-uniform costs

@ Standard Greedy Algorithm could be arbitrarily bad: Doesn't
consider costs at all!

@ Modification: At each step, choose x that maximizes AC?)(:)() —
best “bang for the buck”

@ Can get similar results to uniform-cost case, with some slight
modifications

N. Grammel Submodular Optimization

Results for non-uniform costs

@ Standard Greedy Algorithm could be arbitrarily bad: Doesn't
consider costs at all!

@ Modification: At each step, choose x that maximizes AC?)(:)() —
best “bang for the buck”

@ Can get similar results to uniform-cost case, with some slight
modifications

@ Cover: Wolsey (1982) generalizes the result of uniform-cost
case

N. Grammel Submodular Optimization

Results for non-uniform costs

@ Standard Greedy Algorithm could be arbitrarily bad: Doesn't
consider costs at all!

@ Modification: At each step, choose x that maximizes AC?)(:)() —

best “bang for the buck”

@ Can get similar results to uniform-cost case, with some slight
modifications

@ Cover: Wolsey (1982) generalizes the result of uniform-cost
case

@ For maximization: A bit trickier. This greedy rule doesn't
sufficel But some simple modifications can yield similar
approximations to uniform-cost case.

N. Grammel Submodular Optimization

