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Submodularity

Captures the notion of Diminishing Returns

Definition

Suppose U is a set. A set function f : 2U ! R is submodular if for
any S ,T ✓ U:

f (S \ T ) + f (S [ T )  f (S) + f (T )

How does this represent diminishing returns?

Equivalent Definition:

Definition

A function f : 2U ! R is submodular if for any S ,T ✓ U such that
S ✓ T , and any x 2 U \ T :

f (T [ {x})� f (T )  f (S [ {x})� f (S)
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Submodularity and Diminishing Returns

Imagine choosing items from U one by one

At any point, let S be the set of items chosen so far

Choosing x as the next item gives an increase in utility of
f (S [ {x})� f (S)

If we choose some other items first to get a set T (notice:
S ✓ T ), and then choose x , the increase in utility is
f (T [ {x})� f (T )  f (S [ {x})� f (S)

Adding x give less utility if we start with more
This is the concept of diminishing returns
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Monotonicity: Another Useful Property

Definition

A set function f : 2U ! R is monotone if for every S ,T ✓ U with
S ✓ T :

f (S)  f (T )

We are generally interested in monotone submodular functions.
Often, these are utility functions.
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A Concrete Example

Recall this example utility function from early in the semester:

f ({apple, orange}) = 5

f ({apple}) = f ({orange}) = 3

f ({}) = f (?) = 0

Notice it is monotone submodular!
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Why do we care?

Diminishing Returns

Closely Related to Convexity and Concavity

Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

But with submodularity, we can make strong guarantees:
e�cient algorithms for close approximations.

Many natural functions have these properties

Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document
Many applications to image and signal processing.
Sensor Placement
Graph Cuts
And many more! (Check out submodularity.org)
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Submodular Optimization

Two main types of submodular optimization:

Maximization

Want to find S to maximize f (S) subject to some constraints
Most simply: Want to find S that maximizes f (S) subject to
|S | = k for some k (cardinality constraint)
More generally: Other types of constraints (e.g. knapsack
constraints, matroid constraints)

Cover/Minimization

Want to minimize the cost of covering f
Most simply: Find S with minimum size that achieves
f (S) = f (U)
More generally: Find S such that f (S) = f (U) while
minimizing cost(S) for some cost function.
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Submodular Maximization: The Simplest Case

Suppose we are given a utility function f : 2U ! R and a
cardinality constraing k

Goal: Find
S⇤ = argmax

S✓U:|S |k
f (S)

This is NP-hard in general!

What if f is submodular? Monotone? Nonnegative?
We can find good near-optimal solutions!
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Submodular Maximization: A Simple Greedy Algorithm

Suppose f : 2U ! R is monotone submodular. Assume f is
nonnegative.

Start with S = {}
At each step, pick the item x 2 U \ S that maximizes
f (S [ {x})� f (S) (the item that maximizes the gain in
utility) and let S = S [ {x}.
Continue until |S | = k

Theorem (Nemhauser et al. 1978)

Let S be the k-element set constructed as above, and let S⇤ be
the set that maximizes f over all sets of size at most k . Then:

f (S) � (1� 1/e)f (S⇤)

Thus, the set S provides a (1� 1/e)-approximation, and the
construction gives a polynomial-time approximation algorithm.
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Greedy Algorithm: Proof

For convenience, let �S(x) = f (S [ {x})� f (S). Then
submodularity states that for S ✓ T and x 2 U \ T , we have
�T (x)  �S(x).
Let Si ✓ U be the subset of i elements chosen greedily:

Si = Si�1 [ {argmax
x2U

�Si�1
(x)}

with S0 = {}.

Proof that f (S) � (1� 1/e)f (S⇤).

Due to monotonicity, |S⇤| = k . Let S⇤ = {e1, e2, . . . , ek}. Further,
also due to monotonicity, for any i < k :

f (S⇤)  f (S⇤ [ Si ) (1)
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Greedy Algorithm: Proof

Proof that f (S) � (1� 1/e)f (S⇤).

We also have the following equality

f (S⇤ [ Si ) = f (Si ) +
kX

j=1

�Si[{e1,...,ej�1}(ej) (1)

since the terms
�Si[{e1,...,ej�1}(ej) = f (Si [ {e1, . . . , ej})� f (Si [ {e1, . . . , ej�1})
are telescoping so the sum is equal to
f (Si [ {e1, . . . , ej})� f (Si [ {}) = f (Si [ S⇤)� f (Si ).
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Greedy Algorithm: Proof

Proof that f (S) � (1� 1/e)f (S⇤).

Due to submodularity, we have

f (Si ) +
kX

j=1

�Si[{e1,...,ej�1}(ej)  f (Si ) +
kX

j=1

�Si (ej) (1)

The greedy rule states that f (Si+1)� f (Si ) � �Si (x) for any x .
Thus:

f (Si ) +
kX

j=1

�Si (ej)  f (Si ) +
kX

j=1

(f (Si+1)� f (Si ))

 f (Si ) + k(f (Si+1)� f (SI )) (2)

where the second inequality holds since |S⇤| = k .
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Greedy Algorithm: Proof

Proof that f (S) � (1� 1/e)f (S⇤).

Putting it all together:

f (S⇤)� f (Si )  k(f (Si+1)� f (Si )) (1)

Let �i = f (S⇤)� f (Si ). Then, we can rearrange to get
�i  k(�i � �i+1), or �i+1  �i

�
1� 1

k

�
which yields

�k  �0

✓
1� 1

k

◆k
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Greedy Algorithm: Proof

Proof that f (S) � (1� 1/e)f (S⇤).

Since f is nonnegative, �0 = f (S⇤)� f ({})  f (S⇤). A famous
inequality states: 1� x  e�x for all x 2 R. This yields

�k 
✓
1� 1

k

◆k

�0 
✓
1� 1

k

◆k

f (S⇤)  e�k/k f (S⇤)

Since �k = f (S⇤)� f (Sk), we get

�k = f (S⇤)� f (Sk)  e�1f (S⇤) (1)

f (S⇤)� e�1f (S⇤)  f (Sk) (2)

f (S⇤)(1� 1/e)  f (Sk) (3)
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(1� 1/e) is the best we can get

Theorem (Nemhauser and Wolsey 1978)

Any algorithm that evaluate f on at most a polynomial number of
inputs cannot do better than a (1� 1/e)-approximation of the
optimal solution.
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Speedup with Lazy Evaluations (Minoux 1978)

Evaluating �S(x) for every x at each iteration may be costly

Store for each item x a value �(x), representing an upper
bound on �S(x). Store the items sorted in order of �.

At each step, pick the element x at the front of the list (i.e.
with maximum �(x))

Lazy Evaluation: Evaluate �S only for element x , and update
�(x) �S(x).

If after update, �(x) � �(x 0) for all other x 0, then x is still the
best choice for the greedy algorithm! We’ve avoided
re-evaluating � for all the other elements!
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Submodular Cover

Suppose instead we want to find S⇤ so that f (S⇤) = f (U)
while minimizing |S⇤|.
Again, suppose f is monotone and submodular. But: this
time let f : 2U ! N.
Suppose we apply the same greedy rule until our constructed
set S has f (S) = f (U). Do we have bounds on |S |?
Yes!

Theorem (Wolsey 1982)

|S |  (1 + ln ⇢)|S⇤|

where ⇢ = maxx2U f ({x}) is the maximum possible increase in
utility.
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What about non-uniform costs?

Up until now we have focused on cardinality: either
constrained to |S |  k (maximization), or trying to minimize
|S | (cover)

What if we instead have a cost function c(x) for all x 2 U
and want to maximize f (S) subject to

X

x2S
c(x)  B

for some budget B . This is called a Knapsack Constraint.

Or minimize
P

x2S c(x) such that S covers f (i.e.
f (S) = f (U))?
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Results for non-uniform costs

Standard Greedy Algorithm could be arbitrarily bad: Doesn’t
consider costs at all!

Modification: At each step, choose x that maximizes �S (x)
c(x) —

best “bang for the buck”

Can get similar results to uniform-cost case, with some slight
modifications

Cover: Wolsey (1982) generalizes the result of uniform-cost
case

For maximization: A bit trickier. This greedy rule doesn’t
su�ce! But some simple modifications can yield similar
approximations to uniform-cost case.
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