
Submodular Optimization

Nathaniel Grammel

N. Grammel Submodular Optimization 1 / 28

Submodularity

Captures the notion of Diminishing Returns

Definition

Suppose U is a set. A set function f : 2U ! R is submodular if for
any S ,T ✓ U:

f (S \ T) + f (S [T) f (S) + f (T)

How does this represent diminishing returns?

Equivalent Definition:

Definition

A function f : 2U ! R is submodular if for any S ,T ✓ U such that
S ✓ T , and any x 2 U \ T :

f (T [{x})� f (T) f (S [{x})� f (S)

N. Grammel Submodular Optimization 2 / 28

Submodularity

Captures the notion of Diminishing Returns

Definition

Suppose U is a set. A set function f : 2U ! R is submodular if for
any S ,T ✓ U:

f (S \ T) + f (S [T) f (S) + f (T)

How does this represent diminishing returns?

Equivalent Definition:

Definition

A function f : 2U ! R is submodular if for any S ,T ✓ U such that
S ✓ T , and any x 2 U \ T :

f (T [{x})� f (T) f (S [{x})� f (S)

N. Grammel Submodular Optimization 2 / 28

Submodularity

Captures the notion of Diminishing Returns

Definition

Suppose U is a set. A set function f : 2U ! R is submodular if for
any S ,T ✓ U:

f (S \ T) + f (S [T) f (S) + f (T)

How does this represent diminishing returns?

Equivalent Definition:

Definition

A function f : 2U ! R is submodular if for any S ,T ✓ U such that
S ✓ T , and any x 2 U \ T :

f (T [{x})� f (T) f (S [{x})� f (S)

N. Grammel Submodular Optimization 2 / 28

Submodularity and Diminishing Returns

Imagine choosing items from U one by one

At any point, let S be the set of items chosen so far

Choosing x as the next item gives an increase in utility of
f (S [{x})� f (S)

If we choose some other items first to get a set T (notice:
S ✓ T), and then choose x , the increase in utility is
f (T [{x})� f (T) f (S [{x})� f (S)

Adding x give less utility if we start with more
This is the concept of diminishing returns

N. Grammel Submodular Optimization 3 / 28

Submodularity and Diminishing Returns

Imagine choosing items from U one by one

At any point, let S be the set of items chosen so far

Choosing x as the next item gives an increase in utility of
f (S [{x})� f (S)

If we choose some other items first to get a set T (notice:
S ✓ T), and then choose x , the increase in utility is
f (T [{x})� f (T) f (S [{x})� f (S)

Adding x give less utility if we start with more
This is the concept of diminishing returns

N. Grammel Submodular Optimization 3 / 28

Submodularity and Diminishing Returns

Imagine choosing items from U one by one

At any point, let S be the set of items chosen so far

Choosing x as the next item gives an increase in utility of
f (S [{x})� f (S)

If we choose some other items first to get a set T (notice:
S ✓ T), and then choose x , the increase in utility is
f (T [{x})� f (T) f (S [{x})� f (S)

Adding x give less utility if we start with more

This is the concept of diminishing returns

N. Grammel Submodular Optimization 3 / 28

Submodularity and Diminishing Returns

Imagine choosing items from U one by one

At any point, let S be the set of items chosen so far

Choosing x as the next item gives an increase in utility of
f (S [{x})� f (S)

If we choose some other items first to get a set T (notice:
S ✓ T), and then choose x , the increase in utility is
f (T [{x})� f (T) f (S [{x})� f (S)

Adding x give less utility if we start with more
This is the concept of diminishing returns

N. Grammel Submodular Optimization 3 / 28

Monotonicity: Another Useful Property

Definition

A set function f : 2U ! R is monotone if for every S ,T ✓ U with
S ✓ T :

f (S) f (T)

We are generally interested in monotone submodular functions.
Often, these are utility functions.

N. Grammel Submodular Optimization 4 / 28

Monotonicity: Another Useful Property

Definition

A set function f : 2U ! R is monotone if for every S ,T ✓ U with
S ✓ T :

f (S) f (T)

We are generally interested in monotone submodular functions.
Often, these are utility functions.

N. Grammel Submodular Optimization 4 / 28

A Concrete Example

Recall this example utility function from early in the semester:

f ({apple, orange}) = 5

f ({apple}) = f ({orange}) = 3

f ({}) = f (?) = 0

Notice it is monotone submodular!

N. Grammel Submodular Optimization 5 / 28

Why do we care?

Diminishing Returns

Closely Related to Convexity and Concavity

Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

But with submodularity, we can make strong guarantees:
e�cient algorithms for close approximations.

Many natural functions have these properties

Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document
Many applications to image and signal processing.
Sensor Placement
Graph Cuts
And many more! (Check out submodularity.org)

N. Grammel Submodular Optimization 6 / 28

Why do we care?

Diminishing Returns

Closely Related to Convexity and Concavity

Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

But with submodularity, we can make strong guarantees:
e�cient algorithms for close approximations.

Many natural functions have these properties

Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document
Many applications to image and signal processing.
Sensor Placement
Graph Cuts
And many more! (Check out submodularity.org)

N. Grammel Submodular Optimization 6 / 28

Why do we care?

Diminishing Returns

Closely Related to Convexity and Concavity

Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

But with submodularity, we can make strong guarantees:
e�cient algorithms for close approximations.

Many natural functions have these properties

Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document
Many applications to image and signal processing.
Sensor Placement
Graph Cuts
And many more! (Check out submodularity.org)

N. Grammel Submodular Optimization 6 / 28

Why do we care?

Diminishing Returns

Closely Related to Convexity and Concavity

Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

But with submodularity, we can make strong guarantees:
e�cient algorithms for close approximations.

Many natural functions have these properties

Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document
Many applications to image and signal processing.
Sensor Placement
Graph Cuts
And many more! (Check out submodularity.org)

N. Grammel Submodular Optimization 6 / 28

Why do we care?

Diminishing Returns

Closely Related to Convexity and Concavity

Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

But with submodularity, we can make strong guarantees:
e�cient algorithms for close approximations.

Many natural functions have these properties

Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document
Many applications to image and signal processing.
Sensor Placement
Graph Cuts
And many more! (Check out submodularity.org)

N. Grammel Submodular Optimization 6 / 28

Why do we care?

Diminishing Returns

Closely Related to Convexity and Concavity

Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

But with submodularity, we can make strong guarantees:
e�cient algorithms for close approximations.

Many natural functions have these properties
Inferring Influence in a Network (Stay tuned!)

Determining representative sentences in a document
Many applications to image and signal processing.
Sensor Placement
Graph Cuts
And many more! (Check out submodularity.org)

N. Grammel Submodular Optimization 6 / 28

Why do we care?

Diminishing Returns

Closely Related to Convexity and Concavity

Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

But with submodularity, we can make strong guarantees:
e�cient algorithms for close approximations.

Many natural functions have these properties
Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document

Many applications to image and signal processing.
Sensor Placement
Graph Cuts
And many more! (Check out submodularity.org)

N. Grammel Submodular Optimization 6 / 28

Why do we care?

Diminishing Returns

Closely Related to Convexity and Concavity

Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

But with submodularity, we can make strong guarantees:
e�cient algorithms for close approximations.

Many natural functions have these properties
Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document
Many applications to image and signal processing.

Sensor Placement
Graph Cuts
And many more! (Check out submodularity.org)

N. Grammel Submodular Optimization 6 / 28

Why do we care?

Diminishing Returns

Closely Related to Convexity and Concavity

Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

But with submodularity, we can make strong guarantees:
e�cient algorithms for close approximations.

Many natural functions have these properties
Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document
Many applications to image and signal processing.
Sensor Placement

Graph Cuts
And many more! (Check out submodularity.org)

N. Grammel Submodular Optimization 6 / 28

Why do we care?

Diminishing Returns

Closely Related to Convexity and Concavity

Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

But with submodularity, we can make strong guarantees:
e�cient algorithms for close approximations.

Many natural functions have these properties
Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document
Many applications to image and signal processing.
Sensor Placement
Graph Cuts

And many more! (Check out submodularity.org)

N. Grammel Submodular Optimization 6 / 28

Why do we care?

Diminishing Returns

Closely Related to Convexity and Concavity

Optimization problems are very hard in general (often,
NP-hard), especially with set functions.

But with submodularity, we can make strong guarantees:
e�cient algorithms for close approximations.

Many natural functions have these properties
Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document
Many applications to image and signal processing.
Sensor Placement
Graph Cuts
And many more! (Check out submodularity.org)

N. Grammel Submodular Optimization 6 / 28

Submodular Optimization

Two main types of submodular optimization:

Maximization

Want to find S to maximize f (S) subject to some constraints
Most simply: Want to find S that maximizes f (S) subject to
|S | = k for some k (cardinality constraint)
More generally: Other types of constraints (e.g. knapsack
constraints, matroid constraints)

Cover/Minimization

Want to minimize the cost of covering f
Most simply: Find S with minimum size that achieves
f (S) = f (U)
More generally: Find S such that f (S) = f (U) while
minimizing cost(S) for some cost function.

N. Grammel Submodular Optimization 7 / 28

Submodular Optimization

Two main types of submodular optimization:

Maximization

Want to find S to maximize f (S) subject to some constraints
Most simply: Want to find S that maximizes f (S) subject to
|S | = k for some k (cardinality constraint)
More generally: Other types of constraints (e.g. knapsack
constraints, matroid constraints)

Cover/Minimization

Want to minimize the cost of covering f
Most simply: Find S with minimum size that achieves
f (S) = f (U)
More generally: Find S such that f (S) = f (U) while
minimizing cost(S) for some cost function.

N. Grammel Submodular Optimization 7 / 28

Submodular Optimization

Two main types of submodular optimization:

Maximization
Want to find S to maximize f (S) subject to some constraints
Most simply: Want to find S that maximizes f (S) subject to
|S | = k for some k (cardinality constraint)
More generally: Other types of constraints (e.g. knapsack
constraints, matroid constraints)

Cover/Minimization

Want to minimize the cost of covering f
Most simply: Find S with minimum size that achieves
f (S) = f (U)
More generally: Find S such that f (S) = f (U) while
minimizing cost(S) for some cost function.

N. Grammel Submodular Optimization 7 / 28

Submodular Optimization

Two main types of submodular optimization:

Maximization
Want to find S to maximize f (S) subject to some constraints
Most simply: Want to find S that maximizes f (S) subject to
|S | = k for some k (cardinality constraint)
More generally: Other types of constraints (e.g. knapsack
constraints, matroid constraints)

Cover/Minimization

Want to minimize the cost of covering f
Most simply: Find S with minimum size that achieves
f (S) = f (U)
More generally: Find S such that f (S) = f (U) while
minimizing cost(S) for some cost function.

N. Grammel Submodular Optimization 7 / 28

Submodular Optimization

Two main types of submodular optimization:

Maximization
Want to find S to maximize f (S) subject to some constraints
Most simply: Want to find S that maximizes f (S) subject to
|S | = k for some k (cardinality constraint)
More generally: Other types of constraints (e.g. knapsack
constraints, matroid constraints)

Cover/Minimization
Want to minimize the cost of covering f
Most simply: Find S with minimum size that achieves
f (S) = f (U)
More generally: Find S such that f (S) = f (U) while
minimizing cost(S) for some cost function.

N. Grammel Submodular Optimization 7 / 28

Submodular Maximization: The Simplest Case

Suppose we are given a utility function f : 2U ! R and a
cardinality constraing k

Goal: Find
S⇤ = argmax

S✓U:|S |k
f (S)

This is NP-hard in general!

What if f is submodular? Monotone? Nonnegative?
We can find good near-optimal solutions!

N. Grammel Submodular Optimization 8 / 28

Submodular Maximization: A Simple Greedy Algorithm

Suppose f : 2U ! R is monotone submodular. Assume f is
nonnegative.

Start with S = {}
At each step, pick the item x 2 U \ S that maximizes
f (S [{x})� f (S) (the item that maximizes the gain in
utility) and let S = S [{x}.
Continue until |S | = k

Theorem (Nemhauser et al. 1978)

Let S be the k-element set constructed as above, and let S⇤ be
the set that maximizes f over all sets of size at most k . Then:

f (S) � (1� 1/e)f (S⇤)

Thus, the set S provides a (1� 1/e)-approximation, and the
construction gives a polynomial-time approximation algorithm.

N. Grammel Submodular Optimization 9 / 28

Submodular Maximization: A Simple Greedy Algorithm

Suppose f : 2U ! R is monotone submodular. Assume f is
nonnegative.

Start with S = {}

At each step, pick the item x 2 U \ S that maximizes
f (S [{x})� f (S) (the item that maximizes the gain in
utility) and let S = S [{x}.
Continue until |S | = k

Theorem (Nemhauser et al. 1978)

Let S be the k-element set constructed as above, and let S⇤ be
the set that maximizes f over all sets of size at most k . Then:

f (S) � (1� 1/e)f (S⇤)

Thus, the set S provides a (1� 1/e)-approximation, and the
construction gives a polynomial-time approximation algorithm.

N. Grammel Submodular Optimization 9 / 28

Submodular Maximization: A Simple Greedy Algorithm

Suppose f : 2U ! R is monotone submodular. Assume f is
nonnegative.

Start with S = {}
At each step, pick the item x 2 U \ S that maximizes
f (S [{x})� f (S) (the item that maximizes the gain in
utility) and let S = S [{x}.

Continue until |S | = k

Theorem (Nemhauser et al. 1978)

Let S be the k-element set constructed as above, and let S⇤ be
the set that maximizes f over all sets of size at most k . Then:

f (S) � (1� 1/e)f (S⇤)

Thus, the set S provides a (1� 1/e)-approximation, and the
construction gives a polynomial-time approximation algorithm.

N. Grammel Submodular Optimization 9 / 28

Submodular Maximization: A Simple Greedy Algorithm

Suppose f : 2U ! R is monotone submodular. Assume f is
nonnegative.

Start with S = {}
At each step, pick the item x 2 U \ S that maximizes
f (S [{x})� f (S) (the item that maximizes the gain in
utility) and let S = S [{x}.
Continue until |S | = k

Theorem (Nemhauser et al. 1978)

Let S be the k-element set constructed as above, and let S⇤ be
the set that maximizes f over all sets of size at most k . Then:

f (S) � (1� 1/e)f (S⇤)

Thus, the set S provides a (1� 1/e)-approximation, and the
construction gives a polynomial-time approximation algorithm.

N. Grammel Submodular Optimization 9 / 28

Submodular Maximization: A Simple Greedy Algorithm

Suppose f : 2U ! R is monotone submodular. Assume f is
nonnegative.

Start with S = {}
At each step, pick the item x 2 U \ S that maximizes
f (S [{x})� f (S) (the item that maximizes the gain in
utility) and let S = S [{x}.
Continue until |S | = k

Theorem (Nemhauser et al. 1978)

Let S be the k-element set constructed as above, and let S⇤ be
the set that maximizes f over all sets of size at most k . Then:

f (S) � (1� 1/e)f (S⇤)

Thus, the set S provides a (1� 1/e)-approximation, and the
construction gives a polynomial-time approximation algorithm.

N. Grammel Submodular Optimization 9 / 28

Submodular Maximization: A Simple Greedy Algorithm

Suppose f : 2U ! R is monotone submodular. Assume f is
nonnegative.

Start with S = {}
At each step, pick the item x 2 U \ S that maximizes
f (S [{x})� f (S) (the item that maximizes the gain in
utility) and let S = S [{x}.
Continue until |S | = k

Theorem (Nemhauser et al. 1978)

Let S be the k-element set constructed as above, and let S⇤ be
the set that maximizes f over all sets of size at most k . Then:

f (S) � (1� 1/e)f (S⇤)

Thus, the set S provides a (1� 1/e)-approximation, and the
construction gives a polynomial-time approximation algorithm.

N. Grammel Submodular Optimization 9 / 28

Greedy Algorithm: Proof

For convenience, let �S(x) = f (S [{x})� f (S). Then
submodularity states that for S ✓ T and x 2 U \ T , we have
�T (x) �S(x).
Let Si ✓ U be the subset of i elements chosen greedily:

Si = Si�1 [{argmax
x2U

�Si�1
(x)}

with S0 = {}.

Proof that f (S) � (1� 1/e)f (S⇤).

Due to monotonicity, |S⇤| = k . Let S⇤ = {e1, e2, . . . , ek}. Further,
also due to monotonicity, for any i < k :

f (S⇤) f (S⇤ [Si) (1)

N. Grammel Submodular Optimization 10 / 28

Greedy Algorithm: Proof

Proof that f (S) � (1� 1/e)f (S⇤).

We also have the following equality

f (S⇤ [Si) = f (Si) +
kX

j=1

�Si[{e1,...,ej�1}(ej) (1)

since the terms
�Si[{e1,...,ej�1}(ej) = f (Si [{e1, . . . , ej})� f (Si [{e1, . . . , ej�1})
are telescoping so the sum is equal to
f (Si [{e1, . . . , ej})� f (Si [{}) = f (Si [S⇤)� f (Si).

N. Grammel Submodular Optimization 10 / 28

Greedy Algorithm: Proof

Proof that f (S) � (1� 1/e)f (S⇤).

Due to submodularity, we have

f (Si) +
kX

j=1

�Si[{e1,...,ej�1}(ej) f (Si) +
kX

j=1

�Si (ej) (1)

The greedy rule states that f (Si+1)� f (Si) � �Si (x) for any x .
Thus:

f (Si) +
kX

j=1

�Si (ej) f (Si) +
kX

j=1

(f (Si+1)� f (Si))

 f (Si) + k(f (Si+1)� f (SI)) (2)

where the second inequality holds since |S⇤| = k .

N. Grammel Submodular Optimization 10 / 28

Greedy Algorithm: Proof

Proof that f (S) � (1� 1/e)f (S⇤).

Putting it all together:

f (S⇤)� f (Si) k(f (Si+1)� f (Si)) (1)

Let �i = f (S⇤)� f (Si). Then, we can rearrange to get
�i k(�i � �i+1), or �i+1 �i

�
1� 1

k

�
which yields

�k �0

✓
1� 1

k

◆k

N. Grammel Submodular Optimization 10 / 28

Greedy Algorithm: Proof

Proof that f (S) � (1� 1/e)f (S⇤).

Since f is nonnegative, �0 = f (S⇤)� f ({}) f (S⇤). A famous
inequality states: 1� x e�x for all x 2 R. This yields

�k
✓
1� 1

k

◆k

�0
✓
1� 1

k

◆k

f (S⇤) e�k/k f (S⇤)

Since �k = f (S⇤)� f (Sk), we get

�k = f (S⇤)� f (Sk) e�1f (S⇤) (1)

f (S⇤)� e�1f (S⇤) f (Sk) (2)

f (S⇤)(1� 1/e) f (Sk) (3)

N. Grammel Submodular Optimization 10 / 28

(1� 1/e) is the best we can get

Theorem (Nemhauser and Wolsey 1978)

Any algorithm that evaluate f on at most a polynomial number of
inputs cannot do better than a (1� 1/e)-approximation of the
optimal solution.

N. Grammel Submodular Optimization 11 / 28

Speedup with Lazy Evaluations (Minoux 1978)

Evaluating �S(x) for every x at each iteration may be costly

Store for each item x a value �(x), representing an upper
bound on �S(x). Store the items sorted in order of �.

At each step, pick the element x at the front of the list (i.e.
with maximum �(x))

Lazy Evaluation: Evaluate �S only for element x , and update
�(x) �S(x).

If after update, �(x) � �(x 0) for all other x 0, then x is still the
best choice for the greedy algorithm! We’ve avoided
re-evaluating � for all the other elements!

N. Grammel Submodular Optimization 12 / 28

Submodular Cover

Suppose instead we want to find S⇤ so that f (S⇤) = f (U)
while minimizing |S⇤|.
Again, suppose f is monotone and submodular. But: this
time let f : 2U ! N.
Suppose we apply the same greedy rule until our constructed
set S has f (S) = f (U). Do we have bounds on |S |?
Yes!

Theorem (Wolsey 1982)

|S | (1 + ln ⇢)|S⇤|

where ⇢ = maxx2U f ({x}) is the maximum possible increase in
utility.

N. Grammel Submodular Optimization 13 / 28

What about non-uniform costs?

Up until now we have focused on cardinality: either
constrained to |S | k (maximization), or trying to minimize
|S | (cover)

What if we instead have a cost function c(x) for all x 2 U
and want to maximize f (S) subject to

X

x2S
c(x) B

for some budget B . This is called a Knapsack Constraint.

Or minimize
P

x2S c(x) such that S covers f (i.e.
f (S) = f (U))?

N. Grammel Submodular Optimization 14 / 28

What about non-uniform costs?

Up until now we have focused on cardinality: either
constrained to |S | k (maximization), or trying to minimize
|S | (cover)
What if we instead have a cost function c(x) for all x 2 U
and want to maximize f (S) subject to

X

x2S
c(x) B

for some budget B . This is called a Knapsack Constraint.

Or minimize
P

x2S c(x) such that S covers f (i.e.
f (S) = f (U))?

N. Grammel Submodular Optimization 14 / 28

What about non-uniform costs?

Up until now we have focused on cardinality: either
constrained to |S | k (maximization), or trying to minimize
|S | (cover)
What if we instead have a cost function c(x) for all x 2 U
and want to maximize f (S) subject to

X

x2S
c(x) B

for some budget B . This is called a Knapsack Constraint.

Or minimize
P

x2S c(x) such that S covers f (i.e.
f (S) = f (U))?

N. Grammel Submodular Optimization 14 / 28

Results for non-uniform costs

Standard Greedy Algorithm could be arbitrarily bad: Doesn’t
consider costs at all!

Modification: At each step, choose x that maximizes �S (x)
c(x) —

best “bang for the buck”

Can get similar results to uniform-cost case, with some slight
modifications

Cover: Wolsey (1982) generalizes the result of uniform-cost
case

For maximization: A bit trickier. This greedy rule doesn’t
su�ce! But some simple modifications can yield similar
approximations to uniform-cost case.

N. Grammel Submodular Optimization 15 / 28

Results for non-uniform costs

Standard Greedy Algorithm could be arbitrarily bad: Doesn’t
consider costs at all!

Modification: At each step, choose x that maximizes �S (x)
c(x) —

best “bang for the buck”

Can get similar results to uniform-cost case, with some slight
modifications

Cover: Wolsey (1982) generalizes the result of uniform-cost
case

For maximization: A bit trickier. This greedy rule doesn’t
su�ce! But some simple modifications can yield similar
approximations to uniform-cost case.

N. Grammel Submodular Optimization 15 / 28

Results for non-uniform costs

Standard Greedy Algorithm could be arbitrarily bad: Doesn’t
consider costs at all!

Modification: At each step, choose x that maximizes �S (x)
c(x) —

best “bang for the buck”

Can get similar results to uniform-cost case, with some slight
modifications

Cover: Wolsey (1982) generalizes the result of uniform-cost
case

For maximization: A bit trickier. This greedy rule doesn’t
su�ce! But some simple modifications can yield similar
approximations to uniform-cost case.

N. Grammel Submodular Optimization 15 / 28

Results for non-uniform costs

Standard Greedy Algorithm could be arbitrarily bad: Doesn’t
consider costs at all!

Modification: At each step, choose x that maximizes �S (x)
c(x) —

best “bang for the buck”

Can get similar results to uniform-cost case, with some slight
modifications

Cover: Wolsey (1982) generalizes the result of uniform-cost
case

For maximization: A bit trickier. This greedy rule doesn’t
su�ce! But some simple modifications can yield similar
approximations to uniform-cost case.

N. Grammel Submodular Optimization 15 / 28

Results for non-uniform costs

Standard Greedy Algorithm could be arbitrarily bad: Doesn’t
consider costs at all!

Modification: At each step, choose x that maximizes �S (x)
c(x) —

best “bang for the buck”

Can get similar results to uniform-cost case, with some slight
modifications

Cover: Wolsey (1982) generalizes the result of uniform-cost
case

For maximization: A bit trickier. This greedy rule doesn’t
su�ce! But some simple modifications can yield similar
approximations to uniform-cost case.

N. Grammel Submodular Optimization 15 / 28

