Submodular Optimization

Nathaniel Grammel
Submodularity

- Captures the notion of Diminishing Returns

Definition

Suppose U is a set. A set function $f : 2^U \rightarrow \mathbb{R}$ is submodular if for any $S, T \subseteq U$:

$$f(S \cap T) + f(S \cup T) \leq f(S) + f(T)$$
Submodularity

- Captures the notion of Diminishing Returns

Definition

Suppose U is a set. A set function $f : 2^U \rightarrow \mathbb{R}$ is submodular if for any $S, T \subseteq U$:

$$f(S \cap T) + f(S \cup T) \leq f(S) + f(T)$$

- How does this represent diminishing returns?
Submodularity

- Captures the notion of Diminishing Returns

Definition

Suppose U is a set. A set function $f: 2^U \rightarrow \mathbb{R}$ is submodular if for any $S, T \subseteq U$:

$$f(S \cap T) + f(S \cup T) \leq f(S) + f(T)$$

- How does this represent diminishing returns?

Equivalent Definition:

A function $f: 2^U \rightarrow \mathbb{R}$ is submodular if for any $S, T \subseteq U$ such that $S \subseteq T$, and any $x \in U \setminus T$:

$$f(T \cup \{x\}) - f(T) \leq f(S \cup \{x\}) - f(S)$$
Imagine choosing items from U one by one

At any point, let S be the set of items chosen so far

Choosing x as the next item gives an increase in utility of $f(S \cup \{x\}) - f(S)$
Imagine choosing items from U one by one. At any point, let S be the set of items chosen so far. Choosing x as the next item gives an increase in utility of $f(S \cup \{x\}) - f(S)$. If we choose some other items first to get a set T (notice: $S \subseteq T$), and then choose x, the increase in utility is $f(T \cup \{x\}) - f(T) \leq f(S \cup \{x\}) - f(S)$. This is the concept of diminishing returns.
Imagine choosing items from U one by one

At any point, let S be the set of items chosen so far

Choosing x as the next item gives an *increase* in utility of

$$f(S \cup \{x\}) - f(S)$$

If we choose some other items first to get a set T (*notice*: $S \subseteq T$), and then choose x, the increase in utility is

$$f(T \cup \{x\}) - f(T) \leq f(S \cup \{x\}) - f(S)$$

Adding x give *less* utility if we start with *more*
Imagine choosing items from \(U \) one by one

At any point, let \(S \) be the set of items chosen so far

Choosing \(x \) as the next item gives an *increase* in utility of

\[
f(S \cup \{x\}) - f(S)
\]

If we choose some other items first to get a set \(T \) (notice: \(S \subseteq T \)), and *then* choose \(x \), the increase in utility is

\[
f(T \cup \{x\}) - f(T) \leq f(S \cup \{x\}) - f(S)
\]

Adding \(x \) give less utility if we start with more

 - This is the concept of diminishing returns
Monotonicity: Another Useful Property

Definition

A set function \(f : 2^U \to \mathbb{R} \) is monotone if for every \(S, T \subseteq U \) with \(S \subseteq T \):

\[
f(S) \leq f(T)
\]
Monotonicity: Another Useful Property

Definition

A set function $f : 2^U \to \mathbb{R}$ is monotone if for every $S, T \subseteq U$ with $S \subseteq T$:

$$f(S) \leq f(T)$$

We are generally interested in monotone submodular functions. Often, these are utility functions.
Recall this example utility function from early in the semester:

\[
\begin{align*}
 f(\{\text{apple, orange}\}) &= 5 \\
 f(\{\text{apple}\}) &= f(\{\text{orange}\}) = 3 \\
 f(\{\}) &= f(\emptyset) = 0
\end{align*}
\]

Notice it is monotone submodular!
Why do we care?

- Diminishing Returns
Why do we care?

- Diminishing Returns
- Closely Related to Convexity and Concavity
Why do we care?

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are very hard in general (often, NP-hard), especially with set functions.
Why do we care?

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are very hard in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
Why do we care?

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are very hard in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties

Inferring Influence in a Network (Stay tuned!)
Determining representative sentences in a document
Many applications to image and signal processing.
Sensor Placement
Graph Cuts
And many more! (Check out submodularity.org)
Diminishing Returns
Closely Related to Convexity and Concavity
Optimization problems are very hard in general (often, NP-hard), especially with set functions.
But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
Many natural functions have these properties
 - Inferring Influence in a Network (Stay tuned!)
Why do we care?

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are very hard in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties
 - Inferring Influence in a Network (Stay tuned!)
 - Determining representative sentences in a document
Why do we care?

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are very hard in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties
 - Inferring Influence in a Network (Stay tuned!)
 - Determining representative sentences in a document
 - Many applications to image and signal processing.
Why do we care?

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are very hard in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties
 - Inferring Influence in a Network (Stay tuned!)
 - Determining representative sentences in a document
 - Many applications to image and signal processing.
 - Sensor Placement
Why do we care?

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are very hard in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties
 - Inferring Influence in a Network (Stay tuned!)
 - Determining representative sentences in a document
 - Many applications to image and signal processing.
 - Sensor Placement
 - Graph Cuts
Why do we care?

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are very hard in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties
 - Inferring Influence in a Network (Stay tuned!)
 - Determining representative sentences in a document
 - Many applications to image and signal processing.
 - Sensor Placement
 - Graph Cuts
 - And many more! (Check out submodularity.org)
Two main types of submodular optimization:

- Maximization
- Cover/Minimization
Two main types of submodular optimization:

- Maximization
Two main types of submodular optimization:

Maximization

- Want to find S to maximize $f(S)$ subject to some constraints
- Most simply: Want to find S that maximizes $f(S)$ subject to $|S| = k$ for some k (cardinality constraint)
- More generally: Other types of constraints (e.g. knapsack constraints, matroid constraints)
Two main types of submodular optimization:

Maximization
- Want to find S to maximize $f(S)$ subject to some constraints
- Most simply: Want to find S that maximizes $f(S)$ subject to $|S| = k$ for some k (cardinality constraint)
- More generally: Other types of constraints (e.g. knapsack constraints, matroid constraints)

Cover/Minimization
Two main types of submodular optimization:

Maximization
- Want to find \(S \) to maximize \(f(S) \) subject to some constraints
- Most simply: Want to find \(S \) that maximizes \(f(S) \) subject to \(|S| = k \) for some \(k \) (cardinality constraint)
- More generally: Other types of constraints (e.g. knapsack constraints, matroid constraints)

Cover/Minimization
- Want to minimize the cost of covering \(f \)
- Most simply: Find \(S \) with minimum size that achieves \(f(S) = f(U) \)
- More generally: Find \(S \) such that \(f(S) = f(U) \) while minimizing \(\text{cost}(S) \) for some cost function.
Suppose we are given a utility function $f : 2^U \rightarrow \mathbb{R}$ and a cardinality constraint k.

Goal: Find

$$S^* = \arg \max_{S \subseteq U : |S| \leq k} f(S)$$

This is NP-hard in general!

What if f is submodular? Monotone? Nonnegative?

We can find good near-optimal solutions!
Submodular Maximization: A Simple Greedy Algorithm

- Suppose $f : 2^U \rightarrow \mathbb{R}$ is monotone submodular. Assume f is nonnegative.
Suppose $f : 2^U \rightarrow \mathbb{R}$ is monotone submodular. Assume f is nonnegative.

Start with $S = \emptyset$.
Suppose $f : 2^U \to \mathbb{R}$ is monotone submodular. Assume f is nonnegative.

Start with $S = \emptyset$

At each step, pick the item $x \in U \setminus S$ that maximizes $f(S \cup \{x\}) - f(S)$ (the item that maximizes the gain in utility) and let $S = S \cup \{x\}$.
Suppose $f : 2^U \rightarrow \mathbb{R}$ is monotone submodular. Assume f is nonnegative.

Start with $S = \{\}$

At each step, pick the item $x \in U \setminus S$ that maximizes $f(S \cup \{x\}) - f(S)$ (the item that maximizes the gain in utility) and let $S = S \cup \{x\}$.

Continue until $|S| = k$
Suppose \(f : 2^U \to \mathbb{R} \) is monotone submodular. Assume \(f \) is nonnegative.

Start with \(S = \{\} \)

At each step, pick the item \(x \in U \setminus S \) that maximizes \(f(S \cup \{x\}) - f(S) \) (the item that maximizes the gain in utility) and let \(S = S \cup \{x\} \).

Continue until \(|S| = k \)

Theorem (Nemhauser et al. 1978)

Let \(S \) be the \(k \)-element set constructed as above, and let \(S^* \) be the set that maximizes \(f \) over all sets of size at most \(k \). Then:

\[
f(S) \geq (1 - 1/e)f(S^*)
\]
Submodular Maximization: A Simple Greedy Algorithm

- Suppose \(f : 2^U \rightarrow \mathbb{R} \) is monotone submodular. Assume \(f \) is nonnegative.
- Start with \(S = \{\} \)
- At each step, pick the item \(x \in U \setminus S \) that maximizes
 \(f(S \cup \{x\}) - f(S) \) (the item that maximizes the gain in utility) and let \(S = S \cup \{x\} \).
- Continue until \(|S| = k \)

Theorem (Nemhauser et al. 1978)

Let \(S \) be the \(k \)-element set constructed as above, and let \(S^* \) be the set that maximizes \(f \) over all sets of size at most \(k \). Then:

\[
f(S) \geq (1 - 1/e)f(S^*)
\]

- Thus, the set \(S \) provides a \((1 - 1/e)\)-approximation, and the construction gives a polynomial-time approximation algorithm.
For convenience, let $\Delta_S(x) = f(S \cup \{x\}) - f(S)$. Then submodularity states that for $S \subseteq T$ and $x \in U \setminus T$, we have $
abla_T(x) \leq \Delta_S(x)$.

Let $S_i \subseteq U$ be the subset of i elements chosen greedily:

$$S_i = S_{i-1} \cup \{\arg\max_{x \in U} \Delta_{S_{i-1}}(x)\}$$

with $S_0 = \{\}$.

Proof that $f(S) \geq (1 - 1/e)f(S^*)$.

Due to monotonicity, $|S^*| = k$. Let $S^* = \{e_1, e_2, \ldots, e_k\}$. Further, also due to monotonicity, for any $i < k$:

$$f(S^*) \leq f(S^* \cup S_i) \quad (1)$$
Greedy Algorithm: Proof

Proof that $f(S) \geq (1 - 1/e)f(S^*)$.

We also have the following equality

$$f(S^* \cup S_i) = f(S_i) + \sum_{j=1}^{k} \Delta s_{i \cup \{e_1, \ldots, e_{j-1}\}}(e_j)$$ \hspace{1cm} (1)

since the terms

$$\Delta s_{i \cup \{e_1, \ldots, e_{j-1}\}}(e_j) = f(S_i \cup \{e_1, \ldots, e_j\}) - f(S_i \cup \{e_1, \ldots, e_{j-1}\})$$

are telescoping so the sum is equal to

$$f(S_i \cup \{e_1, \ldots, e_j\}) - f(S_i \cup \{\}) = f(S_i \cup S^*) - f(S_i).$$
Proof that $f(S) \geq (1 - 1/e)f(S^*)$.

Due to submodularity, we have

$$f(S_i) + \sum_{j=1}^{k} \Delta_{S_i \cup \{e_1, \ldots, e_{j-1}\}}(e_j) \leq f(S_i) + \sum_{j=1}^{k} \Delta_{S_i}(e_j) \quad (1)$$

The greedy rule states that $f(S_{i+1}) - f(S_i) \geq \Delta_{S_i}(x)$ for any x. Thus:

$$f(S_i) + \sum_{j=1}^{k} \Delta_{S_i}(e_j) \leq f(S_i) + \sum_{j=1}^{k} (f(S_{i+1}) - f(S_i))$$

$$\leq f(S_i) + k(f(S_{i+1}) - f(S_i)) \quad (2)$$

where the second inequality holds since $|S^*| = k$. \square
Greedy Algorithm: Proof

Proof that \(f(S) \geq (1 - 1/e)f(S^*) \).

Putting it all together:

\[
f(S^*) - f(S_i) \leq k(f(S_{i+1}) - f(S_i))
\]

(1)

Let \(\delta_i = f(S^*) - f(S_i) \). Then, we can rearrange to get \(\delta_i \leq k(\delta_i - \delta_{i+1}) \), or \(\delta_{i+1} \leq \delta_i \left(1 - \frac{1}{k}\right) \) which yields

\[
\delta_k \leq \delta_0 \left(1 - \frac{1}{k}\right)^k
\]
Proof that $f(S) \geq (1 - 1/e)f(S^*)$.

Since f is nonnegative, $\delta_0 = f(S^*) - f(\{\}) \leq f(S^*)$. A famous inequality states: $1 - x \leq e^{-x}$ for all $x \in \mathbb{R}$. This yields

$$\delta_k \leq \left(1 - \frac{1}{k}\right)^k \delta_0 \leq \left(1 - \frac{1}{k}\right)^k f(S^*) \leq e^{-k/k}f(S^*)$$

Since $\delta_k = f(S^*) - f(S_k)$, we get

$$\delta_k = f(S^*) - f(S_k) \leq e^{-1}f(S^*) \tag{1}$$

$$f(S^*) - e^{-1}f(S^*) \leq f(S_k) \tag{2}$$

$$f(S^*)(1 - 1/e) \leq f(S_k) \tag{3}$$
Theorem (Nemhauser and Wolsey 1978)

Any algorithm that evaluates f on at most a polynomial number of inputs cannot do better than a $(1 - 1/e)$-approximation of the optimal solution.
Speedup with Lazy Evaluations (Minoux 1978)

- Evaluating $\Delta_S(x)$ for every x at each iteration may be costly.
- Store for each item x a value $\phi(x)$, representing an upper bound on $\Delta_S(x)$. Store the items sorted in order of ϕ.
- At each step, pick the element x at the front of the list (i.e. with maximum $\phi(x)$).
- Lazy Evaluation: Evaluate Δ_S only for element x, and update $\phi(x) \leftarrow \Delta_S(x)$.
- If after update, $\phi(x) \geq \phi(x')$ for all other x', then x is still the best choice for the greedy algorithm! We’ve avoided re-evaluating Δ for all the other elements!
Suppose instead we want to find S^* so that $f(S^*) = f(U)$ while minimizing $|S^*|$.

Again, suppose f is monotone and submodular. But: this time let $f : 2^U \to \mathbb{N}$.

Suppose we apply the same greedy rule until our constructed set S has $f(S) = f(U)$. Do we have bounds on $|S|$?

Yes!

Theorem (Wolsey 1982)

$$|S| \leq (1 + \ln \rho)|S^*|$$

where $\rho = \max_{x \in U} f(\{x\})$ is the maximum possible increase in utility.
What about non-uniform costs?

- Up until now we have focused on cardinality: either constrained to $|S| \leq k$ (maximization), or trying to minimize $|S|$ (cover).
What about non-uniform costs?

- Up until now we have focused on cardinality: either constrained to $|S| \leq k$ (maximization), or trying to minimize $|S|$ (cover).
- What if we instead have a cost function $c(x)$ for all $x \in U$ and want to maximize $f(S)$ subject to

$$\sum_{x \in S} c(x) \leq B$$

for some budget B. This is called a Knapsack Constraint.
What about non-uniform costs?

- Up until now we have focused on cardinality: either constrained to $|S| \leq k$ (maximization), or trying to minimize $|S|$ (cover).
- What if we instead have a cost function $c(x)$ for all $x \in U$ and want to maximize $f(S)$ subject to

$$\sum_{x \in S} c(x) \leq B$$

for some budget B. This is called a Knapsack Constraint.
- Or minimize $\sum_{x \in S} c(x)$ such that S covers f (i.e. $f(S) = f(U)$)?
Results for non-uniform costs

- Standard Greedy Algorithm could be arbitrarily bad: Doesn’t consider costs at all!
Results for non-uniform costs

- Standard Greedy Algorithm could be arbitrarily bad: Doesn’t consider costs at all!
- Modification: At each step, choose x that maximizes $\frac{\Delta_s(x)}{c(x)}$ — best “bang for the buck”
Results for non-uniform costs

- Standard Greedy Algorithm could be arbitrarily bad: Doesn’t consider costs at all!
- Modification: At each step, choose x that maximizes $\frac{\Delta s(x)}{c(x)}$ — best “bang for the buck”
- Can get similar results to uniform-cost case, with some slight modifications
Results for non-uniform costs

- Standard Greedy Algorithm could be arbitrarily bad: Doesn’t consider costs at all!
- Modification: At each step, choose x that maximizes $\frac{\Delta(x)}{c(x)}$ — best “bang for the buck”
- Can get similar results to uniform-cost case, with some slight modifications
- Cover: Wolsey (1982) generalizes the result of uniform-cost case
Results for non-uniform costs

- Standard Greedy Algorithm could be arbitrarily bad: Doesn’t consider costs at all!
- Modification: At each step, choose x that maximizes $\frac{\Delta s(x)}{c(x)}$ — best “bang for the buck”
- Can get similar results to uniform-cost case, with some slight modifications
- Cover: Wolsey (1982) generalizes the result of uniform-cost case
- For maximization: A bit trickier. This greedy rule doesn’t suffice! But some simple modifications can yield similar approximations to uniform-cost case.