Nathaniel Grammel

5900 <ロ > < 回 > < 回 > < 回 > < 回 > ₹ N. Grammel Submodular Optimization 1/28

Submodularity

• Captures the notion of Diminishing Returns

Definition

Suppose U is a set. A set function $f: 2^U \to \mathbb{R}$ is submodular if for any $S, T \subseteq U$:

 $f(S \cap T) + f(S \cup T) \leq f(S) + f(T)$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

クへで 2/28

₹

Submodularity

• Captures the notion of Diminishing Returns

Definition

Suppose U is a set. A set function $f: 2^U \to \mathbb{R}$ is submodular if for any $S, T \subseteq U$:

$$f(S \cap T) + f(S \cup T) \le f(S) + f(T)$$

• How does this represent diminishing returns?

 Image: N. Grammel
 Submodular Optimization
 2/28

Submodularity

• Captures the notion of Diminishing Returns

Definition

Suppose U is a set. A set function $f: 2^U \to \mathbb{R}$ is submodular if for any $S, T \subseteq U$:

$$f(S \cap T) + f(S \cup T) \le f(S) + f(T)$$

- How does this represent diminishing returns?
- Equivalent Definition:

Definition

A function $f: 2^U \to \mathbb{R}$ is submodular if for any $S, T \subseteq U$ such that $S \subseteq T$, and any $x \in U \setminus T$:

$$f(T \cup \{x\}) - f(T) \le f(S \cup \{x\}) - f(S)$$

N. Grammel

Submodular Optimization

< ロ > < 四 > < 三 > < 三 >

クへで 2/<u>28</u>

Ē

- Imagine choosing items from U one by one
- At any point, let S be the set of items chosen so far
- Choosing x as the next item gives an *increase* in utility of f(S ∪ {x}) − f(S)

クへで 3/28

æ

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Imagine choosing items from U one by one
- At any point, let S be the set of items chosen so far
- Choosing x as the next item gives an *increase* in utility of f(S ∪ {x}) − f(S)
- If we choose some other items first to get a set T (notice: S ⊆ T), and then choose x, the increase in utility is f(T ∪ {x}) - f(T) ≤ f(S ∪ {x}) - f(S)

Submodular Optimization

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

∽ < 3 / 28

Ē

- Imagine choosing items from U one by one
- At any point, let S be the set of items chosen so far
- Choosing x as the next item gives an *increase* in utility of f(S ∪ {x}) − f(S)
- If we choose some other items first to get a set T (notice: $S \subseteq T$), and then choose x, the increase in utility is $f(T \cup \{x\}) - f(T) \le f(S \cup \{x\}) - f(S)$
- Adding x give *less* utility if we start with *more*

Submodular Optimization

▲□▶ ▲□▶ ▲三▶ ▲三▶

∽ < 3 / 28

- Imagine choosing items from U one by one
- At any point, let S be the set of items chosen so far
- Choosing x as the next item gives an *increase* in utility of f(S ∪ {x}) − f(S)
- If we choose some other items first to get a set T (notice: $S \subseteq T$), and *then* choose x, the increase in utility is $f(T \cup \{x\}) - f(T) \le f(S \cup \{x\}) - f(S)$
- Adding x give *less* utility if we start with *more*
 - This is the concept of diminishing returns

Submodular Optimization

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

ッへC 3/28

Monotonicity: Another Useful Property

Definition

A set function $f: 2^U \to \mathbb{R}$ is *monotone* if for every $S, T \subseteq U$ with $S \subseteq T$:

 $f(S) \leq f(T)$

N. Grammel Su

Submodular Optimization

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

ク < (~ 4 / 28

Đ.

Monotonicity: Another Useful Property

Definition

A set function $f: 2^U \to \mathbb{R}$ is *monotone* if for every $S, T \subseteq U$ with $S \subseteq T$:

 $f(S) \leq f(T)$

We are generally interested in *monotone submodular* functions. Often, these are *utility functions*.

N. Grammel Submodular Optimization

୬ < (~ 4 / 28

₹

<ロ > < 四 > < 回 > < 回 > < 回 > <

A Concrete Example

• Recall this example utility function from early in the semester:

$$f(\{apple, orange\}) = 5$$
$$f(\{apple\}) = f(\{orange\}) = 3$$
$$f(\{\}) = f(\emptyset) = 0$$

• Notice it is monotone submodular!

N. Grammel Submodular Optimization

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

୬ < ୍ 5 / 28

Ę

• Diminishing Returns

N. Grammel Submodular Optimization 6 / 28

<ロ > < 回 > < 回 > < 回 > < 回 >

₹

590

- Diminishing Returns
- Closely Related to Convexity and Concavity

N. Grammel Submodular Optimization 6 / 28

<ロ > < 回 > < 回 > < 回 > < 回 >

Ę

590

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are *very hard* in general (often, NP-hard), especially with set functions.

< ロ ト イ コ ト イ ヨ ト イ ヨ ト ヨ つ へ へ</th>N. GrammelSubmodular Optimization6/28

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are *very hard* in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.

N. Grammel Submodular Optimization

<ロ > < 回 > < 回 > < 回 > < 回 >

୬ ଏ ୯ 6 / 28

Ē

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are *very hard* in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties

ク へ で 6 / 28

Ē

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are *very hard* in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties
 - Inferring Influence in a Network (Stay tuned!)

Submodular Optimization

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

୬ ଏ ୯ 6 / 28

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are *very hard* in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties
 - Inferring Influence in a Network (Stay tuned!)
 - Determining representative sentences in a document

Submodular Optimization

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

୬ ଏ ୯ 6 / 28

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are *very hard* in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties
 - Inferring Influence in a Network (Stay tuned!)
 - Determining representative sentences in a document
 - Many applications to image and signal processing.

Submodular Optimization

∢□▶ ∢@▶ ∢≧▶ ∢≧▶

∽ < 6 / 28

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are *very hard* in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties
 - Inferring Influence in a Network (Stay tuned!)
 - Determining representative sentences in a document
 - Many applications to image and signal processing.
 - Sensor Placement

N. Grammel

Submodular Optimization

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

୬ ଏ ୯ 6 / 28

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are *very hard* in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties
 - Inferring Influence in a Network (Stay tuned!)
 - Determining representative sentences in a document
 - Many applications to image and signal processing.
 - Sensor Placement
 - Graph Cuts

Submodular Optimization

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- Diminishing Returns
- Closely Related to Convexity and Concavity
- Optimization problems are *very hard* in general (often, NP-hard), especially with set functions.
- But with submodularity, we can make strong guarantees: efficient algorithms for close approximations.
- Many natural functions have these properties
 - Inferring Influence in a Network (Stay tuned!)
 - Determining representative sentences in a document
 - Many applications to image and signal processing.
 - Sensor Placement
 - Graph Cuts
 - And many more! (Check out submodularity.org)

Submodular Optimization

< ロ > < 回 > < 亘 > < 亘 >

• Two main types of submodular optimization:

 ▲ □ ▷ ▲ □ ▷ ▲ □ ▷ ▲ □ ▷ ▲ □ ▷ ▲ □ ▷ ▲ □ ▷ ▲ □ ▷ ↓

 N. Grammel
 Submodular Optimization

 7 / 28

- Two main types of submodular optimization:
- Maximization

N Grammel	Submodular Optimization	7	/ 28
N. Grammer	Submodular Optimization	· · · · · · · · · · · · · · · · · · ·	/ 20

<ロ > < 四 > < 回 > < 回 > < 回 > <

Đ,

5900

- Two main types of submodular optimization:
- Maximization
 - Want to find S to maximize f(S) subject to some constraints
 - Most simply: Want to find S that maximizes f(S) subject to |S| = k for some k (cardinality constraint)
 - More generally: Other types of constraints (e.g. knapsack constraints, matroid constraints)

Submodular Optimization

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

ッへで 7 / 2<u>8</u>

æ

- Two main types of submodular optimization:
- Maximization
 - Want to find S to maximize f(S) subject to some constraints
 - Most simply: Want to find S that maximizes f(S) subject to |S| = k for some k (cardinality constraint)
 - More generally: Other types of constraints (e.g. knapsack constraints, matroid constraints)
- Cover/Minimization

Submodular Optimization

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

クへで 7 / 28

æ

- Two main types of submodular optimization:
- Maximization
 - Want to find S to maximize f(S) subject to some constraints
 - Most simply: Want to find S that maximizes f(S) subject to |S| = k for some k (cardinality constraint)
 - More generally: Other types of constraints (e.g. knapsack constraints, matroid constraints)

• Cover/Minimization

- Want to minimize the *cost* of *covering f*
- Most simply: Find S with minimum size that achieves
 f(S) = f(U)
- More generally: Find S such that f(S) = f(U) while minimizing cost(S) for some cost function.

Submodular Optimization

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

クへで 7 / 28

Submodular Maximization: The Simplest Case

- Suppose we are given a utility function $f: 2^U \to \mathbb{R}$ and a cardinality constraing k
- Goal: Find

$$S^* = rg \max_{S \subseteq U: |S| \le k} f(S)$$

- This is NP-hard in general!
- What if f is submodular? Monotone? Nonnegative?
 - We can find good near-optimal solutions!

N. Grammel

Submodular Optimization

<ロ > < 回 > < 回 > < 回 > < 回 >

୬ ଏ ୯ 8 / 28

Ē

• Suppose $f: 2^U \to \mathbb{R}$ is monotone submodular. Assume f is nonnegative.

> < ロ > < 回 > < 回 > < 回 > < 回 > ₹ N. Grammel Submodular Optimization 9 / 28

590

- Suppose $f: 2^U \to \mathbb{R}$ is monotone submodular. Assume f is nonnegative.
- Start with $S = \{\}$

N. Grammel Submodular Optimization 9 / 28

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

₹

590

- Suppose $f: 2^U \to \mathbb{R}$ is monotone submodular. Assume f is nonnegative.
- Start with $S = \{\}$
- At each step, pick the item x ∈ U \ S that maximizes
 f(S ∪ {x}) − f(S) (the item that maximizes the gain in
 utility) and let S = S ∪ {x}.

Submodular Optimization

< ロ > < 回 > < 亘 > < 亘 >

∽ < 9 / 28

- Suppose $f: 2^U \to \mathbb{R}$ is monotone submodular. Assume f is nonnegative.
- Start with $S = \{\}$
- At each step, pick the item x ∈ U \ S that maximizes
 f(S ∪ {x}) − f(S) (the item that maximizes the gain in
 utility) and let S = S ∪ {x}.
- Continue until |S| = k

N. Grammel

Submodular Optimization

< ロ > < 回 > < 回 > < 回 > < 回 >

୬ ବ ୧ 9 / 28

- Suppose $f: 2^U \to \mathbb{R}$ is monotone submodular. Assume f is nonnegative.
- Start with $S = \{\}$
- At each step, pick the item x ∈ U \ S that maximizes
 f(S ∪ {x}) − f(S) (the item that maximizes the gain in
 utility) and let S = S ∪ {x}.
- Continue until |S| = k

Theorem (Nemhauser et al. 1978)

Let S be the k-element set constructed as above, and let S^* be the set that maximizes f over all sets of size at most k. Then:

$$f(S) \geq (1-1/e)f(S^*)$$

N. Grammel

Submodular Optimization

<ロ > < 四 > < 回 > < 回 > < 回 > < 回 > <

∽ < 9 / 28

- Suppose $f: 2^U \to \mathbb{R}$ is monotone submodular. Assume f is nonnegative.
- Start with $S = \{\}$
- At each step, pick the item x ∈ U \ S that maximizes
 f(S ∪ {x}) − f(S) (the item that maximizes the gain in
 utility) and let S = S ∪ {x}.
- Continue until |S| = k

Theorem (Nemhauser et al. 1978)

Let S be the k-element set constructed as above, and let S^* be the set that maximizes f over all sets of size at most k. Then:

$$f(S) \geq (1-1/e)f(S^*)$$

• Thus, the set S provides a (1 - 1/e)-approximation, and the construction gives a polynomial-time approximation algorithm.

For convenience, let $\Delta_S(x) = f(S \cup \{x\}) - f(S)$. Then submodularity states that for $S \subseteq T$ and $x \in U \setminus T$, we have $\Delta_T(x) \leq \Delta_S(x)$. Let $S_i \subseteq U$ be the subset of *i* elements chosen greedily:

$$S_i = S_{i-1} \cup \{ \arg \max \Delta_{S_{i-1}}(x) \}$$

with $S_0 = \{\}$.

Proof that $f(S) \ge (1-1/e)f(S^*)$.

Due to monotonicity, $|S^*| = k$. Let $S^* = \{e_1, e_2, \dots, e_k\}$. Further, also due to monotonicity, for any i < k:

$$f(S^*) \le f(S^* \cup S_i) \tag{1}$$

< ロ > < 固 > < 匡 > < 匡 >

N. Grammel

Submodular Optimization

10 / 28

Proof that $f(S) \ge (1 - 1/e)f(S^*)$.

We also have the following equality

$$f(S^* \cup S_i) = f(S_i) + \sum_{j=1}^k \Delta_{S_i \cup \{e_1, \dots, e_{j-1}\}}(e_j)$$
 (1)

since the terms $\Delta_{S_i \cup \{e_1, \dots, e_{j-1}\}}(e_j) = f(S_i \cup \{e_1, \dots, e_j\}) - f(S_i \cup \{e_1, \dots, e_{j-1}\})$ are telescoping so the sum is equal to $f(S_i \cup \{e_1, \dots, e_j\}) - f(S_i \cup \{\}) = f(S_i \cup S^*) - f(S_i).$

N. Grammel

Submodular Optimization

クへで <u>10</u>/28

Đ.

Proof that $f(S) \ge (1-1/e)f(S^*)$.

Due to submodularity, we have

$$f(S_i) + \sum_{j=1}^k \Delta_{S_i \cup \{e_1, ..., e_{j-1}\}}(e_j) \le f(S_i) + \sum_{j=1}^k \Delta_{S_i}(e_j)$$
 (1)

The greedy rule states that $f(S_{i+1}) - f(S_i) \ge \Delta_{S_i}(x)$ for any x. Thus:

$$f(S_i) + \sum_{j=1}^k \Delta_{S_i}(e_j) \le f(S_i) + \sum_{j=1}^k (f(S_{i+1}) - f(S_i)) \\ \le f(S_i) + k(f(S_{i+1}) - f(S_l))$$
(2)

where the second inequality holds since $|S^*| = k$.

N. Grammel

Submodular Optimization

<ロ> (四) (四) (三) (三) (三)

୬ ୯.୯ 10 / 28

₹

Proof that $f(S) \ge (1-1/e)f(S^*)$.

Putting it all together:

$$f(S^*) - f(S_i) \le k(f(S_{i+1}) - f(S_i))$$
(1)

Let $\delta_i = f(S^*) - f(S_i)$. Then, we can rearrange to get $\delta_i \leq k(\delta_i - \delta_{i+1})$, or $\delta_{i+1} \leq \delta_i \left(1 - \frac{1}{k}\right)$ which yields

$$\delta_k \le \delta_0 \left(1 - \frac{1}{k} \right)^k$$

N. Grammel Subm

Submodular Optimization

<ロ > < 団 > < 団 > < 団 > < 団 > <

୬ ୯ ୯ 10 / 28

Đ,

Proof that $f(S) \ge (1-1/e)f(S^*)$.

Since f is nonnegative, $\delta_0 = f(S^*) - f(\{\}) \le f(S^*)$. A famous inequality states: $1 - x \le e^{-x}$ for all $x \in \mathbb{R}$. This yields

$$\delta_k \leq \left(1 - \frac{1}{k}\right)^k \delta_0 \leq \left(1 - \frac{1}{k}\right)^k f(S^*) \leq e^{-k/k} f(S^*)$$

Since $\delta_k = f(S^*) - f(S_k)$, we get

$$\delta_k = f(S^*) - f(S_k) \le e^{-1} f(S^*)$$
 (1)

$$f(S^*) - e^{-1}f(S^*) \le f(S_k)$$
 (2)

$$f(S^*)(1-1/e) \le f(S_k)$$
 (3)

《曰》《卽》《言》《言》

N. Grammel

Submodular Optimization

ク < (~ 10 / 28

₹

(1-1/e) is the best we can get

Theorem (Nemhauser and Wolsey 1978)

Any algorithm that evaluate f on at most a polynomial number of inputs cannot do better than a (1 - 1/e)-approximation of the optimal solution.

N. Grammel Submoo

Submodular Optimization

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

୬ ୯ ୯ 11 / 28

Đ,

Speedup with Lazy Evaluations (Minoux 1978)

- Evaluating $\Delta_S(x)$ for every x at each iteration may be costly
- Store for each item x a value φ(x), representing an upper bound on Δ_S(x). Store the items sorted in order of φ.
- At each step, pick the element x at the front of the list (i.e. with maximum φ(x))
- Lazy Evaluation: Evaluate Δ_S only for element x, and update $\phi(x) \leftarrow \Delta_S(x)$.
- If after update, φ(x) ≥ φ(x') for all other x', then x is still the best choice for the greedy algorithm! We've avoided re-evaluating Δ for all the other elements!

Submodular Optimization

▶ ▲圖▶ ▲厘▶ ▲厘▶

クへ() 12/28

Submodular Cover

- Suppose instead we want to find S^* so that $f(S^*) = f(U)$ while minimizing $|S^*|$.
- Again, suppose f is monotone and submodular. But: this time let $f: 2^U \to \mathbb{N}$.
- Suppose we apply the same greedy rule until our constructed set S has f(S) = f(U). Do we have bounds on |S|?
- Yes!

Theorem (Wolsey 1982)

 $|S| \leq (1 + \ln \rho)|S^*|$

where $\rho = \max_{x \in U} f(\{x\})$ is the maximum possible increase in utility.

N. Grammel

Submodular Optimization

◆□ > ◆□ > ◆豆 > ◆豆 >

୬ ୯ ୯ 13 / 28

What about non-uniform costs?

 Up until now we have focused on cardinality: either constrained to |S| ≤ k (maximization), or trying to minimize |S| (cover)

 N. Grammel
 Submodular Optimization
 14/28

What about non-uniform costs?

- Up until now we have focused on cardinality: either constrained to |S| ≤ k (maximization), or trying to minimize |S| (cover)
- What if we instead have a cost function c(x) for all x ∈ U and want to maximize f(S) subject to

$$\sum_{x\in S}c(x)\leq B$$

for some *budget B*. This is called a Knapsack Constraint.

N. Grammel S

Submodular Optimization

▲□▶ ▲□▶ ▲三▶ ▲三▶

∽ ९ € 14 / 28

What about non-uniform costs?

- Up until now we have focused on cardinality: either constrained to |S| ≤ k (maximization), or trying to minimize |S| (cover)
- What if we instead have a cost function c(x) for all x ∈ U and want to maximize f(S) subject to

$$\sum_{x\in S}c(x)\leq B$$

for some *budget B*. This is called a Knapsack Constraint.

• Or minimize $\sum_{x \in S} c(x)$ such that S covers f (i.e. f(S) = f(U))?

N. Grammel

Submodular Optimization

《曰》《卽》《臣》《臣》

প ৫ 14 / 28

• Standard Greedy Algorithm could be arbitrarily bad: Doesn't consider costs at all!

<ロ > < 回 > < 回 > < 回 > < 回 >

Đ,

590

- Standard Greedy Algorithm could be arbitrarily bad: Doesn't consider costs at all!
- Modification: At each step, choose x that maximizes $\frac{\Delta_S(x)}{c(x)}$ best "bang for the buck"

- Standard Greedy Algorithm could be arbitrarily bad: Doesn't consider costs at all!
- Modification: At each step, choose x that maximizes $\frac{\Delta_S(x)}{c(x)}$ best "bang for the buck"
- Can get similar results to uniform-cost case, with some slight modifications

N. Grammel Submodular Optimization

প ৫ 15 / 28

Ē

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- Standard Greedy Algorithm could be arbitrarily bad: Doesn't consider costs at all!
- Modification: At each step, choose x that maximizes $\frac{\Delta_S(x)}{c(x)}$ best "bang for the buck"
- Can get similar results to uniform-cost case, with some slight modifications
- Cover: Wolsey (1982) generalizes the result of uniform-cost case

Submodular Optimization

<ロ> <同> <同> < 回> < 回>

୬ ୯.୯ 15 / 28

- Standard Greedy Algorithm could be arbitrarily bad: Doesn't consider costs at all!
- Modification: At each step, choose x that maximizes $\frac{\Delta_S(x)}{c(x)}$ best "bang for the buck"
- Can get similar results to uniform-cost case, with some slight modifications
- Cover: Wolsey (1982) generalizes the result of uniform-cost case
- For maximization: A bit trickier. This greedy rule doesn't suffice! But some simple modifications can yield similar approximations to uniform-cost case.

N. Grammel Subr

Submodular Optimization

▲□▶ ▲□▶ ▲三▶ ▲三▶