How Bad Is Selfish Routing?

Dantong Ji

University of Maryland April 19, 2018

Outline

- Worst Case For Linear Latency Functions
- Extensions

Main Theorem (Theorem 4.5):

If
$$(G,r,l)$$
 has linear latency functions, then $ho(G,r,l) \leq rac{4}{3}$

- Linear latency: $l_e(x) = a_e x + b_e$, where $a_e, b_e \ge 0$.
- The bound is tight: recall the Braess's Paradox!
- ullet Proof sketch: C(f) is the cost at Nash equilibrium. • An optimal flow for $\left(G, \frac{r}{2}, l\right)$ is at least $\frac{1}{4}C(f)$;
- Augmenting from $\left(G, \frac{r}{2}, l\right)$ to $\left(G, r, l\right)$ introduces at least $\frac{1}{2}C(f)$.

Lemmas

Lemma 2.2: A flow f feasible for instance (G,r,l) is at Nash equilibrium if and only if for every $i\in\{1,\cdots,k\}$ and $P_1,P_2\in P_i$ with $f_{P_1}>0$, $l_{p_1}(f)\leq l_{p_2}(f)$.

Lemmas

 $c'_{P_2}(f)$. Lemma 2.4: A flow f is optimal for a convex program of the form (NLP) if and only if for every $i \in \{1, \dots, k\}$ and $P_1, P_2 \in P_i$ with $f_{P_1} > 0$, $c'_{P_1}(f) \le 1$

•
$$c_e(f_e)=l_e(f_e)f_e$$

• (NLP) Min $\sum_{e\in E}c_e(f_e)$
s.t $\sum_{P\in \mathbf{P}_i}f_P=r_i$ $\forall i\in\{1,\cdots,k\}$
 $f_e=\sum_{P\in \mathbf{P}_i}f_P$ $\forall e\in E$
 $f_P\geq 0$ $\forall P\in \mathbf{P}$

_emmas

- $f_{P_1} > 0$, $l_{p_1}(f) \le l_{p_2}(f)$. equilibrium if and only if for every $i \in \{1, \dots, k\}$ and $P_1, P_2 \in P_i$ with Lemma 2.2: A flow f feasible for instance (G, r, l) is at Nash
- $c'_{P_1}(f) \le c'_{P_2}(f)$ if and only if for every $i \in \{1, \dots, k\}$ and $P_1, P_2 \in P_i$ with $f_{P_1} > 0$, Lemma 2.4: A flow f is optimal for a convex program of the form (NLP)

_emmas

- Corollary 2.5: Let (G, r, l) be an instance in which $x \cdot l_e(x)$ is a convex function for each edge e, with marginal cost functions l^* . Then a flow for the instance (G, r, l^*) . f feasible for (G,r,l) is optimal if and only if it is at Nash equilibrium
- Marginal cost functions l^* : $l_e^*(f_e) = (l_e(f_e)f_e)' = l_e(f_e) + l_e'(f_e)f_e$.

Quick Refresh

Main Theorem (Theorem 4.5):

If (G, r, l) has linear latency functions, then $\rho(G, r, l) \leq \frac{4}{3}$

Linear latency: $l_e(x) = a_e x + b_e$, where $a_e, b_e \ge 0$. $C(f) = \sum a_e f_e^2 + b_e f_e$ $l_e^*(x) = 2a_e x + b_e$.

• $l_e(x)$, C(f), $l_e^*(x)$ are all convex functions.

Lemmas

Rewrite the linear version of the lemmas (Lemma 4.1):

Let (G,r,l) be an instance with edge latency functions $l_e(x)=a_ex+b_e$, $\forall e\in E.$ Then,

(a) a flow f is at Nash equilibrium in G if and only if for each sourcesink pair i and $P,P'\in P_i$ with $f_P>0$,___

$$\sum_{e \in P} a_e f_e + b_e \le \sum_{e \in P'} a_e f_e + b_e$$

(b) a flow f^* is optimal in G if and only if for each source-sink pair i and $P,P'\in \mathbf{P}_i$ with $f_P^*>0$,

$$\sum_{e \in P} 2a_e f_e^* + b_e \le \sum_{e \in P'} 2a_e f_e^* + b_e$$

Lemmas

- Lemma 4.3: Suppose (G, r, l) has linear latency functions and f is a flow at Nash equilibrium. Then,
- (a) the flow $\frac{f}{2}$ is optimal for $(G, \frac{r}{2}, l)$;
- (b) the marginal cost of increasing the flow on a path P with respect to $\frac{f}{2}$ equals the latency of P with respect to f.
- Proof:

$$C(f) = \sum_{e} a_e f_e^2 + b_e f_e$$

 $l_e^*(x) = 2a_e x + b_e$.

Main Theorem (Theorem 4.5):

If
$$(G,r,l)$$
 has linear latency functions, then $ho(G,r,l) \leq rac{4}{3}$

- ullet Proof sketch: C(f) is the cost at Nash equilibrium.
- S1: An optimal flow for $\left(G, \frac{r}{2}, l\right)$ is at least $\frac{1}{4}C(f)$;
- S2: Augmenting from $\left(G, \frac{r}{2}, l\right)$ to $\left(G, r, l\right)$ introduces at least $\frac{1}{2}C(f)$.

•
$$l_e(x) = a_e x + b_e$$
, $C(f) = \sum_e a_e f_e^2 + b_e f_e$, $l_e^*(x) = 2a_e x + b_e$.

• Step 1: An optimal flow for $\left(G, \frac{r}{2}, l\right)$ is at least $\frac{1}{4}C(f)$.

Proof:

$$C\left(\frac{f}{2}\right) = \sum_{i=1}^{n} \frac{1}{4} a_{e} f_{2}^{2} + \frac{1}{2} b_{e} f_{e}$$
$$\geq \frac{1}{4} \sum_{i=1}^{n} a_{e} f_{e}^{2} + b_{e} f_{e}$$
$$= \frac{1}{4} C(f)$$

- Step 2: Augmenting from $\left(G,\frac{r}{2},l\right)$ to $\left(G,r,l\right)$ introduces at least
- $\frac{1}{2}C(f)$
- Lemma 4.4: Suppose (G,r,l) is an instance with linear latency tunctions for which f^st is an optimal flow. Let $L_i^st(f^st)$ be the minimum $(G, (1+\delta)r, l)$ has cost at least Then for any $\delta>0$, a feasible flow for the problem instance marginal cost of increasing flow on an s_i-t_i path with respect to f^st .

$$C(f^*) + \delta \sum_{i=1}^{\kappa} L_i^*(f^*) r_i$$

- Proof of Lemma 4.4:
- Due to the convexity of the function $x \cdot l_e(x) = a_e x^2 + b_e x$ $l_e(f_e)f_e \geq l_e(f_e^*)f_e^* + (f_e f_e^*)l_e^*(f_e^*)$

$$C(f) = \sum_{e \in E} l_e(f_e) f_e$$

$$\geq \sum_{e \in E} l_e(f_e^*) f_e^* + \sum_{e \in E} (f_e - f_e^*) l_e(f_e^*)$$

$$= C(f^*) + \sum_{i=1}^{K} \sum_{P \in P_i} l_P^*(f^*) (f_P - f_P^*)$$

•
$$C(f) \ge C(f^*) + \sum_{i=1}^k \sum_{P \in P_i} l_P^*(f^*)(f_P - f_P^*)$$

 $\ge C(f^*) + \sum_{i=1}^k L_i^*(f^*) \sum_{P \in P_i} (f_P - f_P^*)$
 $= C(f^*) + \delta \sum_{i=1}^k L_i^*(f^*) r_i$

- least $\frac{1}{2}C(f)$ Lemma 4.4 -> Augmenting from $\left(G, \frac{r}{2}, l\right)$ to $\left(G, r, l\right)$ introduces at
- Proof:

oof:

$$C(f^*) \ge C\left(\frac{f}{2}\right) + \sum_{i}^{k} L_i^* \left(\frac{f}{2}\right) \frac{r_i}{2}$$

$$= C\left(\frac{f}{2}\right) + \frac{1}{2} \sum_{i}^{k} L_i(f) r_i = C\left(\frac{f}{2}\right) + \frac{1}{2} C(f)$$

Extensions

- Assumption:
- Agents have full information of the latency of different paths.
- Infinitely many agents, each controlling a negligible fraction of the traffic.
- These assumptions do not always hold.
- Approximate Nash Equilibrium
 Finite Splittable Flow
- Finite Unsplittalbe Flow

Approximate Nash Equilibrium

- No full information. Agents can only sense the difference if it is
- Definition 5.1: A flow f feasible for instance (G, r, l) is at ϵ $\delta \in [0, f_{P_1}]$, we have $l_{P_1}(f) \leq (1+\epsilon)l_{P_2}(\tilde{f})$, where approximate Nash equilibrium if for all $i \in \{1, \dots, k\}$, $P_1, P_2 \in P_i$, and significant.

$$\begin{cases} f_P - \delta & \text{if } P = P_1 \\ f_P + \delta & \text{if } P = P_2 \\ f_P & \text{if } P \notin \{P_1, P_2\} \end{cases}$$

Approximate Nash Equilibrium

- Lemma 5.2: A flow f is at ϵ -approximate Nash equilibrium if and only $(1+\epsilon)l_{P_2}(f).$ if for every $i \in \{1, \dots, k\}$ and $P_1, P_2 \in P_i$ with $f_{P_1} > 0$, $l_{P_1}(f) \le 1$
- Theorem 5.3: If f is at ϵ -approximate Nash equilibrium with $\epsilon < 1$ for (G,r,l) and f^* is feasible for (G,2r,l), then $C(f) \leq \frac{1+\epsilon}{1-\epsilon}C(f^*)$.

Finite Splittable Flow

- Model: We have k agents. Agent i intends to send r_i through $s_i t_i$.
- Agents can send the flow through multiple paths.
- A flow $f=\left\{f^{(1)},\cdots,f^{(k)}\right\}$, with $f^{(i)}\colon P_i \to \mathcal{R}^+$.

The cost of agent i is $C_i(f) = \sum_{P \in P_i} l_P(f) f_P^{(i)}$.

Theorem 5.4: If f is at Nash equilibrium for the finite splittable for the finite splittable instance (G, 2r, l), then $C(f) \leq C(f^*)$. instance (G,r,l) with $x\cdot l_e(x)$ convex for each e, and f^* is feasible

Finite Unsplittable Flow

- Model: The same as finite splittable case, except for that agents must route its flow on a single path.
- No general bicriteria result for unsplittable flow!
- If agents do not control too much flow, and the edge latency functions are not too steep, similar result holds
- Theorem 5.5: Suppose f is at Nash equilibrium in the finite unsplittable instance (G,r,l), and for some $\alpha<2$, we have $l_e(x+r_i)\leq \alpha\cdot l_e(x)$ for all agents $i\in\{1,\cdots,k\}$, edges $e\in E$, and $x\in[0,\sum_{j\neq i}r_j]$. Then for any flow f^* feasible for (G,2r,l), $C(f)\leq \frac{\alpha}{2-\alpha}\cdot C(f^*)$.

Thanks!