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* Worst Case For Linear Latency Functions

e Extensions



Worst Case For Linear Latency Functions

Main Theorem (Theorem 4.5):

If (G, 1,1) has linear latency functions, then p(G,7,1) < m

Linear latency: [, (x) = a,x + b,, wherea,, b, = 0.

The bound is tight: recall the Braess’s Paradox!

Proof sketch: C(f) is the cost at Nash equilibrium.
* An optimal flow for Aﬁum‘ Nv is at _mmmﬂwmqv“

* Augmenting from Am.m. Nv to (G, r,1) introduces at least wmqv.



Lemmas

* Lemma 2.2: Aflow f feasible for instance (G, 7, [) is at Nash
equilibrium if and only if foreveryi € {1, -+, k} and P;, P, € P; with

fe, >0, 1, (f) = 1, (f).



Lemmas

* Lemma 2.4: A flow f is optimal for a convex program of the form (NLP) if
and only if for every i € {1,---,k}and P, P, € P, with fp, >0, cp (f) <

cp, (f).

° nmcnmv = chnmv%m

* (NLP) Min  Xeeg Ce(fe)
s.t 2pep, fp =T vie{l, -, k}
\m — Mwmmlmw Ve € E

fp=0 VP EP



Lemmas

* Lemma 2.2: Aflow f feasible for instance (G, 7, [) is at Nash
equilibrium if and only if foreveryi € {1, -+, k} and P;, P, € P; with

fe, >0, 1, (f) = 1, (f).

* Lemma 2.4: Aflow f is optimal for a convex program of the form (NLP)
if and only if foreveryi € {1,---,k} and P;, P, € P; with fp >0,

ch, (F) < ¢, ()



Lemmas

* Corollary 2.5: Let (G, 1, [) be an instance in which x - [,(x) is a convex
function for each edge e, with marginal cost functions [*. Then a flow
f feasible for (G, 7, 1) is optimal if and only if it is at Nash equilibrium
for the instance (G, 1, [*).

* Marginal cost functions I*: I (f,) = (I.(f.)f.) = L. (f,) + I, (f.)f..



Quick Refresh

* Main Theorem (Theorem 4.5):

If (G, 1,1) has linear latency functions, then p(G,7,1) < m

* Linear latency: [,(x) = a,x + b,, wherea,, b, = 0.
C(f) = M Qm\mm + befe

[ (x) HmNme + b,.
e [,(x), C(f), l;(x) are all convexfunctions.



Lemmas

* Rewrite the linear version of the lemmas (Lemma 4.1):

Let (G, 1, 1) be an instance with edge latency functions [, (x) = a,x +
b,,Ve € E.Then,

(a) a flow f is at Nash equilibrium in G if and only if for each source-
sink pair i and P, P’ € P; with f, > 0,

D Gefo+be < ) acf. +be

eepP eepPs
(b) a flow f™ is optimal in G if and only if for each source-sink pair i and
P,P' € P, with f5" > 0,

M 2a,f; + b, < M 2a,f" + b,

eepP eepPy



Lemmas

* Lemma 4.3: Suppose (G, 1, 1) has linear latency functionsand f is a

flow at Nash equilibrium. Then,

* (a) the flow Lis optimal for Am‘m 1) ;

2
* (b) the marginal cost of increasing the flow on a path P with respect to m
equals the latency of P with respectto f.

* Proof:
m.Q.,v — M Qm\mm T @m\m
[ (x) HmNme + b,.



Worst Case For Linear Latency Functions

* Main Theorem (Theorem 4.5):

If (G, 7,1) has linear latency functions, then p(G,7,1) < m
* Proof sketch: C(f) is the cost at Nash equilibrium.
e S1: An optimal flow for Am.m\ Nv is at least wﬁQJh

* S2: Augmenting from Am,m\ Nv to (G, r,1) introduces at _mmmﬁwmqv.

*le(x) = aex + b, C(f) = 2o Qm\mm + befe, le(x) = 2a,x + b,.



Worst Case For Linear Latency Functions-1

* Step 1: An optimal flow for Amum. Nv is at least MQCJ.

* Proof:

c(h)= M%& + 2 bef,

N*Mim + bef
Loy



Worst Case For Linear Latency Functions-2

r

 Step 2: Augmenting from AQ\W Nv to (G, 1, 1) introduces at least
1
-C(f)

* Lemma 4.4: Suppose (G, ,1) is an instance with linear latency
functions for which f* is an optimal flow. Let L; (f*) be the minimum
marginal cost of increasing flow on an s; — t; path with respectto f".

Then for any § > 0, a feasible flow for the problem instance
(G,(1+ &)r,1) has cost at least

k
CFI+6 ) Lilfm



Worst Case For Linear Latency Functions-2

* Proof of Lemma 4.4:
* Due to the convexity of the function x - [, (x) = a,x? + b,x

le(fe)fe = le(f)fe + (fe — fe)le(fe)
Y C(f) = Leeele(fe)fe

> ) LD+ ) (o= L)

eEE k eEE

=CUN+ ) D BED e - )

=1 Wmﬁm



Worst Case For Linear Latency Functions-2

* C(f) 2 C(f*) + Xy Xpep, () (e — )
> C(f)+ X1 Li(f) Tpep, (e — f7)
=C(f") + %MWHH L; (f*)r;



Worst Case For Linear Latency Functions-2

Z Nv to (G,r, 1) introduces at

* Lemma 4.4 -> Augmenting from Am\ »

_mmmﬁwmqv

* Proof:

2l Sn()3
= c(5)+ M:? = c(5)+5c



Extensions

* Assumption:
* Agents have full information of the latency of different paths.
* Infinitely many agents, each controllinga negligible fraction of the traffic.

* These assumptions do not always hold.
* Approximate Nash Equilibrium
* Finite Splittable Flow
* Finite Unsplittalbe Flow



Approximate Nash Equilibrium

* No full information. Agents can only sense the differenceif it is
significant.

* Definition 5.1: A flow f feasible for instance (G, 1,1) is at e-
approximate Nash equilibrium if for all i € mu..: ,k}, P;,P, € P;, and
6 € [0, fp,], we have lp (f) < (1 +€)lp,(f), where

(f,—6  ifP=P,

frt8 ifP=P,
fp i P €P, Py}

A

\



Approximate Nash Equilibrium

* Lemma 5.2: Aflow f is at e-approximate Nash equilibrium if and only
if foreveryi € {1,---,k}and P, P, € P; with fp > 0,1, (f) <

(1+e)lp, (f).

* Theorem 5.3: If f is at e-approximate Nash equilibrium with € < 1 for
1+€

(G,1,1) and f*is feasible for (G, 2r,1), then C(f) < —C(f").

1—€



ittable Flow

Finite Sp

* Model: We have k agents. Agent i intends to send r; through s; — t;.
* Agents can send the flow through multiple paths.

e Aflow f ={fD, ... f®L with fO.p, 5> R

The cost of agent i is C;(f) = Xpep, Lp (f) w@.

* Theorem 5.4: If f is at Nash equilibrium for the finite splittable
instance (G, r,1) with x - [,(x) convexfor each e, and f* is feasible
for the finite splittable instance (G, 2r, 1), then C(f) < C(f™).



ttable Flow

 Model: The same as finite splittable case, except for that agents must
route its flow on a single path.

* No general bicriteria result for unsplittable flow!

* If agents do not control too much flow, and the edge latency
functions are not too steep, similar result holds.

* Theorem 5.5: Suppose f is at Nash equilibrium in the finite
unsplittable instance (G, 1, 1), and for some a < 2, we have
l.(x+1)<a-l,(x)forall agentsi € {1, -, k}, mo_mmm e € E, and
x €[0,3;.;177]. Thenfor any flow f* feasible for (G, 27,1), C(f) <

— - C(f).



hanks!



