How bad is Selfish Routing? - Tim Roughgarden and Eva Tardos

Yogesh Balaji

University of Maryland

April 17, 2018

Yogesh Balaji (UMD)

Selfish Routing

< □ >

April 17, 2018 <u>1 / 16</u>

₹

Overview

2 Optimal and Equilibrium Flows

3 Bicriteria Result for General Latency Functions

Yogesh Balaji (UMD)

Selfish Routing

æ 5900 April 17, 2018 2 / 16

-∢ ≣ ▶

< □ ▶

<□>

< ⊒

Motivation

- Traffic routing problem Given the rate of traffic between each pair of nodes in a network, find an assignment of traffic to paths so that the sum of all travel times (the total latency) is minimized
- Latency function for each edge is load dependent
- Hard to impose optimal routing strategies on users. Results in selfish behavior
- How much does network performance suffer from this lack of regulation?

Yogesh Balaji (UMD)

Selfish Routing

April 17, 2018 3 / 16

SQA

Braees's Paradox

Assume we need to transport 1 unit from node s to node t. The figure in the right has one additional edge of 0 latency running from v to w.

			. (~
Yogesh Balaji (UMD)	Selfish Routing	April 17, 2018	4 / 16

Braees's Paradox

Additional of an edge negatively impacts the performance of the system

Yogesh Balaji (UMD)

Selfish Routing

April 17, 2018 5 / 16

Notation

- Directed Graph G = (V, E), V vertex set, E edge set
- $\{(s_1, t_1), (s_2, t_2), \dots, (s_k, t_k)\}$ set of source destination pairs
- \mathcal{P}_i Set of simple s_i - t_i paths; $\mathcal{P} = \cup_i \mathcal{P}_i$
- $f: \mathcal{P} \to \mathcal{R}^+$ flow for a given path
- $f_e = \sum_{P:e \in P} f_P$ net flow flowing through a given edge e
- r_i Amount of flow to be sent from s_i to t_i
- $I_e(f)$ Latency for the edge e, function of the flow f. I_e is assumed to be nonnegative, differentiable and nondecreasing
- $I_P(f) = \sum_{e \in P} I_e(f_e)$ latency for the path f
- $C(f) = \sum_{P \in \mathcal{P}} I_P(f) f_P$ Total latency of flow f: Path formulation
- $C(f) = \sum_{e \in E} I_e(f_e) f_e$ Total latency of flow f edge formulation

Yogesh Balaji (UMD)

Selfish Routing

April 17, 2018 6 / 16

Flows at Nash Equilibrium

Definition 1

A flow f feasible for instance (G, r, I) is at Nash Equilibrium if $\forall i \in \{1, 2, ..., k\}$, $P_1, P_2 \in \mathcal{P}_i$ and $\delta \in [0, f_{P_1}]$, we have $I_{P_1}(f) \leq I_{P_2}(\tilde{f})$, where

$$\tilde{f}_P = \begin{cases} f_P - \delta & \text{if } P = P_1 \\ f_P + \delta & \text{if } P = P_2 \\ f_P & \text{if } P \notin \{P_1, P_2\} \end{cases}$$

This is because at Nash Equilibrium, users do not have any incentive to deviate.

Yogesh Balaji (UMD)

Selfish Routing

April 17, 2018 <u>7 / 16</u>

< E

Flows at Nash Equilibrium

Letting $\delta \to 0$ in the above definition, we find that at Nash Equilibrium, all $s_i - t_i$ flow paths (paths to which f assigns a positive flow) will have equal latency. Denote this by $L_i(f)$.

Lemma 1

If f is a flow at Nash Equilibrium for instance (G, r, I), then

$$C(f) = \sum_{i=1}^{k} L_i(f) r_i$$

	< د		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Yogesh Balaji (UMD)	Selfish Routing	April 17, 2018	8 / 16

Optimal Flow

The optimal flow can be found by minimizing the following non-linear program

Optimal Flow Formulation

$$\begin{split} \min \sum_{e \in E} c_e(f_e) \\ \text{subject to} \\ \sum_{P \in \mathcal{P}_i} f_P &= r_i \quad \forall i \in \{1, 2, \dots k\} \\ f_e &= \sum_{P \in \mathcal{P}: e \in P} f_P \quad \forall e \in E \\ f_P &\geq 0 \quad \forall P \in \mathcal{P} \end{split}$$

Yogesh Balaji (UMD)

Selfish Routing

 $\bullet \Box \bullet$

< ⊡ >

▲ 문 ▶ ▲ 문

April 17, 2018 9 / 16

æ

Bicriteria result

- We will analyze the ratio between the cost of a flow at Nash Equilibrium to that of minimum latency flow.
- Price of Anarchy = $\rho(G, r, I) = \frac{\text{Cost of Flow at Nash Equilibrium}}{\text{Cost of Minimum Latency Flow}}$
- In the Braees's Paradox example, $\rho(G, r, l) = 4/3$
- We will upper bound the cost of the Nash flow by the cost of optimal flow at *increased rates*

rogesn Balaji (U

Selfish Routing

■ ▶ ◀ ☰ ▶ ☰ ∽ � ় April 17, 2018 10 / 16

Bicriteria result

Theorem (Thm 3.1)

If f is a flow at Nash equilibrium at (G, r, l) and f^* is feasible for (G, 2r, l), then $C(f) \leq C(f^*)$

Proof

We know from Lemma 1 that

$$C(f) = \sum_i L_i(f)r_i$$

Construct new latency function $\overline{I}_e(x)$ such that

$$ar{l}_e(x) = egin{cases} l_e(f_e) & ext{if } x \leq f_e \ l_e(x) & ext{if } x > f_e \end{cases}$$

Yogesh Balaji (UMD)

Selfish Routing

< □ ▶

< 一型

April 17, 2018

11 / 16

Proof cont.

Yogesh

$$x(\bar{l}_e(x) - l_e(x)) \le l_e(f_e)f_e \quad \forall x \ge 0 \tag{1}$$

$$\sum_{e} \bar{l}_{e}(f_{e}^{*})f_{e}^{*} - C(f^{*}) = \sum_{e \in E} f_{e}^{*}(\bar{l}_{e}(f_{e}^{*}) - l_{e}(f_{e}^{*}))$$
(2)

$$\leq \sum_{e \in E} I_e(f_e) f_e \tag{3}$$

$$= C(f) \tag{4}$$

In other words, evaluating f^* with latency function \overline{I} (rather than I) increases its cost by at most an additive factor of C(f)

		•□▶ •⊡▶	▲ 클 ► ▲ 클 ► _ 클	<i><i></i></i>
Balaji (UMD)	Selfish Routing		April 17, 2018	12 / 16

Proof cont.

Let f_0 denote zero flow in G. By construction, $\overline{I}_P(f_0) \ge L_i(f)$ for any path $P \in \mathcal{P}_i$. Since I_e is nondecreasing for each edge e, $\overline{I}_P(f^*) \ge L_i(f)$. So,

$$\sum_{e} \bar{l}_{e}(f_{e}^{*})f_{e}^{*} = \sum_{P} \bar{l}_{P}(f^{*})f_{P}^{*} \ge \sum_{i} \sum_{P \in \mathcal{P}_{i}} L_{i}(f)f_{P}^{*}$$
(5)

$$=\sum_{i}2L_{i}(f)r_{i}$$
(6)

$$= 2C(f) \tag{7}$$

	< □	· → <i>▲ 클</i> → ▲ 클 → ▲ 클 → ▲ 클	৩৫৫
Yogesh Balaji (UMD)	Selfish Routing	April 17, 2018	13 / 16

Proof cont.

Combining the previous two slides,

$$egin{aligned} \mathcal{C}(f^*) &\geq \sum_P ar{l}_P(f^*) f_P^* - \mathcal{C}(f) \ &\geq 2\mathcal{C}(f) - \mathcal{C}(f) = \mathcal{C}(f) \ &\mathcal{Q}ED. \end{aligned}$$

More general form of previous result:

Theorem (Thm 3.2)

If f is a flow at Nash equilibrium at (G, r, I) and f^* is feasible for $(G, (1 + \gamma)r, I)$, then $C(f) \leq \frac{1}{\gamma}C(f^*)$

	. ₹	⊐ ► ◄	D •	< ≣ >	< ≣ >	₹	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Yogesh Balaji (UMD)	Selfish Routing			Apr	il 17, 2018		14 / 16

References

Roughgarden, Tim and Tardos, Éva How Bad is Selfish Routing? *J. ACM* March 2002, 236–259.

Yogesh	Ral	laii ((UMD)
TOgesh	Da	aji (

Selfish Routing

 $\blacktriangleleft \square \rightarrow$

<⊡>

▲ 볼 ▶ ▲ 볼 ▶ 볼 ∽ ♀ ↔ April 17, 2018 15 / 16

Thank You

Yogesh Balaji (UMD)

Selfish Routing

 $\P \square \rightarrow$

< ⊡ >