

Datta et al. 2016 IEEE Symposium on Security and Privacy

Presented by: Yigitcan Kaya

- Problem Statement
- Goals

- Solution

 Challenges
 Building Blocks

 Experiments
 Related Work
- Conclusion

(•

Solution:

<u>Quantitative Input</u> Influence (**QII**)

- A family of metrics to generate transparency reports
- data Black-box access with the knowledge of the

<u>General transparency</u> <u>queries</u>

Individual

"Which input had the most influence in my credit denial?"

Group

 "What inputs have the most influence on credit decisions of women?"

Disparity

 "What inputs influence men getting more positive outcomes than women?"

<u>QII</u>: A technique of measuring the influence of an input on its outputs.

Causal Intervention

Deals with the correlated inputs

Quantity of Interest

Supports a general class of transparency queries

vary the other in a specific way to Basic Idea: Keep one feature fixed, and

Classification outcome of an individual:

 $Pr[c(X) = c(x_0) | X = x_0]$ Classification outcomes a group:

 $\Pr[c(X) = 1 \mid X \text{ is } female]$

Disparity between classification outcomes of groups:

Quantity of Interest

Block #2:

Building

Pr[c(X) = 1 | X is male] - Pr[c(X) = 1 | X is female]

two blocks: Combining

quantity of interest Qll of an input on a

individual: $\Pr[c(X) = c(x_0) | X = x_0] - \Pr[c(X_{-i}U_i) | X = x_0] - \Pr[c(X_{-i}U_i) | X = x_0]$ QII of input *i* on the classification outcome of an

QII of input *i* on the classification outcomes a group:

$$\Pr[c(X) = 1 | X \text{ is female}] - \Pr[c(X_{-i}U_i)] = c(x_0) | X = x_0]$$

outcomes of groups: QII of input *i* on the disparity between classification

 $\begin{aligned} &\Pr[c(X) = 1 \mid X \text{ is male}] - \Pr[c(X) \\ &= 1 \mid X \text{ is female}] - \Pr[c(X_{-i}U_i) = 1 \mid X \text{ is male}] - \Pr[c(X_{-i}U_i) \\ &= 1 \mid X \text{ is female}] \end{aligned}$

Definition of Formal QI

the difference in quantity of interest when the intervention. input replaced with random value via an i on a quantity of interest $oldsymbol{Q}_A(.)$ of a system A is The Quantitative Input Influence (**QII**) of an input

$$\iota^{Q_{\mathcal{A}}}(i) = Q_{\mathcal{A}}(X) - Q_{\mathcal{A}}(X_{-i}U_i)$$

<u>Single inputs have</u> low influence

Fig. 1: A histogram of the highest specific causal influence most inputs alone have very low influence. for some feature across individuals in the adult dataset. Alone,

Approach: Naïve 3)

Set QII

features S with independent random values from the distribution of inputs. Instead of a single feature *i*, replace a set of

$$\iota^Q(S) = Q(X) - Q(X_{-S}U_S)$$

Not all features are equally important within a set S!

Find marginal influence of an input within a set.

A Better Idea:

that marginalizes the influence of age Influence of age and income over only income $i(\{age, income\}) - i(\{income\})$

Marginal QII

...{age, income}, {age, gender, job}, {age, gender, income}... contribution! There might be many sets in which *age* has some marginal

Need to aggregate marginal QII across all sets.

Marginal QII

Set QII is a cooperative game

Cooperative Game:

- N: set of agents
- v(S): Value of set S

Our Setting:

- Input features are agents
- Influence of feature set S, i.e. set QII i(S) is v(S)
- Marginal QII is $m_i(S) = v(S \cup \{i\}) v(S)$

Experiments

Predictive policing using NLSY data set

Classification: History of arrest

data set. Income prediction using a benchmark census

Classification: income < 50k or income >=50k?

Standard machine learning algorithms

Logistic Regression, SVM...

Model Interpretability

By simplicity of the model:

- LASSO, sparse linear models, decision trees
- Possible accuracy loss, but human interpretable

By approximation of the model:

- LIME (Local Interpretable Model-Agnostic Explanations)
- Can provide richer explanations
- The relation with the actual underlying model is not clear

Causal intervention:

Deals with correlated inputs

Quantity of interest:

Supports a general class of transparency queries

Cooperative game:

Computes joint and aggregate influence

Performance:

- QII measures can be approximated efficiently
- For each report: worst case <5mins, best case <1sec

Conclusion

Questions?