When Security Games Go Green

Suraj Nair
Outline

- Green Security Game
- Planning algorithms
- Planning and learning
- Results
Green Security Domains:
Protecting Fish and Wildlife
Features

Green security games

- *Generalized Stackelberg assumption*
- *Repeated and frequent attacks*
 - Significant amounts data
- *Attacker bounded rationality*
 - Limited surveillance/planning
Green Security Game Model

- T round game, K defenders, N targets where $N \geq K$

- Coverage vector $c = \langle c_i \rangle$ where
 - c_i denotes probability that target i is covered
 - c^t denotes the defender strategy profile for round t

Green Security Game Model

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Green Security Game Model

- L attackers who respond to convex combination of defender strategy in recent rounds

- \(\eta^t \) denotes the strategy of attacker for round t

\[
\eta^3 = 0.3c^1 + 0.7c^2
\]

- Payoff values for target i \(P_i^a, R_i^a, P_i^d, R_i^d \)
 - Where P stands for Penalty, R for reward
 - a for attacker, d for defender

- Expected utility for defender d if attacker targets i

\[
U_i^d(c) = c_iR_i^d + (1 - c_i)P_i^d
\]
Green Security Game Model

- Attacker chooses target with bounded rationality
 - Following the SUQR model
 - Choose more promising targets with higher probability
- Probability that an attacker attacks target \(i \) is
 \[q_i(\omega, \eta) = \frac{e^{\omega_1 \eta_i + \omega_2 R_i^a + \omega_3 P_i^a}}{\sum_j e^{\omega_1 \eta_j + \omega_2 R_j^a + \omega_3 P_j^a}} \]
- Create a defender strategy profile \([c]\) = \(\langle c^1, \ldots, c^T\rangle\)
- Expected utility of defender in round \(t \)
 \[E^t([c]) = \sum_l \sum_i q_i(\omega^l, \eta^t) U_i^d(c^t) \]
Outline

- Green Security Game Model

- *Planning algorithms*

- Planning and Learning

- Results
Exploit attackers’ delayed observation \((\eta^t = c^{t-1})\)

A simple example:
- Patrol Plan A: always uniformly random
- Patrol Plan B: change her strategy deliberately, detect more snares overall

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>80%</td>
<td>20%</td>
</tr>
<tr>
<td>S</td>
<td>20%</td>
<td>80%</td>
</tr>
</tbody>
</table>
Planning

- Solve directly **X**
- Optimize over all rounds \rightarrow computationally expensive

Jan | Feb | Mar | Apr | May
PlanAhead-M

- Look ahead M steps: find an optimal strategy for current round as if it is the M^{th} last round of the game
- Sliding window of size M. Example with M=2

Add discount factor γ to compensate the over-estimation
PlanAhead-M

Algorithm 1 Plan Ahead(ω, M)
Output: a defender strategy profile [c]
1: for t=1 to T do
2: \(c^t = f\text{-PlanAhead}(c^{t-1}, \omega, \min\{T - t + 1, M\}) \)

- Mathematical program

\[
\max_{c^t, c^{t+1}, \ldots, c^{t+m-1}} \sum_{\tau=0}^{m-1} E^{t+\tau} \quad (2)
\]

s.t. \(E^\tau = \sum_l \sum_i q_{i}(\omega^l, \eta^\tau)U^d_i(c^\tau), \tau = t, \ldots, t + m - 1 \quad (3) \)

\(\eta^\tau = c^{\tau-1}, \tau = t, \ldots, t + m - 1 \quad (4) \)

\(\sum_i c_i^\tau \leq K, \tau = t, \ldots, t + m - 1 \quad (5) \)
FixedSequence-M

- Require the defender to execute the sequence of length M repeatedly

- Example with $M=2$: find best strategy A and B

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

- Theoretical guarantee: $\left(1 - \frac{1}{M}\right)$ approximation of the optimal strategy profile
Algorithm 2 Fixed Sequence

Output: defender strategy profile \([c]\)

1: \((a^1, \ldots, a^M) = f\text{-FixedSequence}(\omega, M)\).
2: **for** \(t=1\) to \(T\) **do**
3: \(c^t = a^{(t \mod M)+1}\)

\[
\begin{align*}
\max_{a^1, \ldots, a^M} \sum_{t=1}^{M} E^t \\
\text{s.t.} \quad E^t &= \sum_l \sum_i q_i(\omega^l, \eta^t) U^d_i(a^t), t = 1, \ldots, M \\
\eta^1 &= a^M \\
\eta^t &= a^{t-1}, t = 2, \ldots, M \\
\sum_i a^t_i &\leq K, t = 1, \ldots, M
\end{align*}
\]
Outline

- Green Security Game Model
- Planning algorithms
- Planning and Learning
- Results
Planning and Learning

- Learn parameters in attackers’ bounded rationality model from attack data

- Previous work
 - Apply Maximum Likelihood Estimation (MLE)
 - May lead to highly biased results

- Proposed learning algorithm
 - Calculate posterior distribution for each data point
Algorithm 3 Learn-BU ($\eta, \chi, \{\hat{\omega}\}, p$)

Output: \bar{p} – a probability distribution over $\{\hat{\omega}\} = \{\hat{\omega}^1, ..., \hat{\omega}^S\}$.

1: **for** $i=1$ to N **do**
2: **for** $s=1$ to S **do**
3: $\bar{p}_i(s) = \frac{p(s)q_i(\hat{\omega}^s, \eta)}{\sum_r p(r)q_i(\hat{\omega}^r, \eta)}$
4: **for** $s=1$ to S **do**
5: $\bar{p}(s) = \frac{\sum_i \chi_i \bar{p}_i(s)}{\sum_i \chi_i}$

χ_i - number of attacks on target i
discrete set $\{\hat{\omega}\}$ - $\{\hat{\omega}^1, ..., \hat{\omega}^S\}$
prior p - $\langle p_1, ..., p_S \rangle$
General Framework of Green Security Game

- Learn from data: Improve model
- Defender plans her strategy
- Local guards executes patrols
- Poachers attack targets
- Start New Round
Outline

- Green Security Game Model
- Planning algorithms
- Planning and Learning
- Results
Experimental Results
Planning

- Baseline: FS-1 (Stackelberg), PA-1 (Myopic)
- Attacker respond to last round strategy, 10 Targets, 4 Patrollers
Experimental Results
Planning and Learning

- Baseline: Maximum Likelihood Estimation (MLE)

Solution Quality

Runtime
Thank you!