
CMSC 131 Quiz 3 Worksheet 
 

The next quiz for the course will be on Wed, Mar 6. The following list provides additional information about the quiz. 
 

 The quiz will be a written quiz (no computer). 
 Closed book, closed notes quiz. 
 Answers must be neat and legible. 
 Quiz instructions can be found at http://www.cs.umd.edu/~nelson/classes/utilities/examRules.html. 
 Regarding Piazza - Feel free to post questions in Piazza regarding the worksheet and possible solutions to 

problems. 
 
The following exercises cover the material to be included in this quiz. Solutions to these exercises will not be 
provided, but you are welcome to discuss your solutions with the TAs or instructor during office hours.  It is 
recommended that you try these exercises on paper first (without using the computer).   
 

Exercises 
 

1. What is the difference between a static method and a non-static method? 
2. When you should define a method as static? 
3. What is the difference between a non-static field and a static field? 

4. What does “this” represent in a class method? 
5. Does a constructor for a class constructs the object? 

6. Can an object live in the stack? 
7. When are parameters and local variables created and destroyed? 
8. Define a class Telephone according to the following information: 

 
Instance Variables (all private) 
 

a. area code  integer value 

b. three digit value  integer value 
c. four digit value  four digit value 
d. user name  String reference 

 
Instance Methods 

 
a. Constructor - Allows you to initialize all the instance variables of the class.  Name the parameters 

after the instance variables (i.e., you must use the this reference) 
b. Default constructor – Initializes the object to the number 555-555-5555 and the name to null.  This 

constructor relies on the previous constructor for object initialization (i.e., you must use this). 
c. Copy constructor 

d. Get/Set methods – Define get/set methods for all instance variables of the class. 
e. equals – Two numbers are considered the same if they have the same area code, three and four digit 

values. 
f. toString – Returns a string with the user name, followed by the phone number. 

 
Static Variable (private) 
 

a. count – keeps track of the number of Telephone objects that have been created. 
 
Static Methods 
 

a. getCount – Returns the count value. 

b. getDigits – In a phone keypad numbers 0 to 9 are associated with characters. The getDigits method 
returns a string with the digits that correspond to the provided string. For example for “CAR” the 

method will return the integer “227”. 
 
 
 
 
 

 
 
 

 
 

http://www.cs.umd.edu/~nelson/classes/utilities/examRules.html


9. Define a class called House that has the following specification: 
 

Instance Variables (all private) 
 

a. id  integer value representing a house’s id 
b. rooms  integer representing the number of rooms 

 
Static Variable (private) 

 
count  integer with the default value of 0. 

 
Methods 

 
a. Constructor with id and rooms parameters - Initializes all the instance variables of the object.  Name 

the parameters after the instance variables.  You must increase the count accordingly. 
b. Default Constructor – Initializes the object with an id value of -1 and a number of rooms equals to 1. 

You must call the previous constructor in order to implement this one. 
c. toString – Returns a string with the id, followed by the rooms, followed by the count.  Use the following 

format:  
 

id: id rooms: rooms count: count 
 

where id and rooms represent the values associated with the object and count is the static variable 
value. 

 
d. addToHouse – Static method that has as parameters a House reference and an integer representing a 

number of rooms. The method will increase the number of rooms of the provided house by the provided 
integer value.  The method will return a reference to the House parameter. 
 

e. addRooms – Non-static method that has an integer as a parameter. The parameter represents the 
number of rooms to be added to the number of rooms associated with the current object.  You must 
implement this method using the addToHouse method. 

 
The following driver and associated output illustrates the functionality associated with the House class.  
 
 

Driver 
  

public static void main(String[] args) { 

 House house1 = new House(2, 4); 

 System.out.println(house1); 

   

 House house2 = new House(); 

 System.out.println(house2); 

   

 House.addToHouse(House.addToHouse(house1, 10), 50); 

 System.out.println(house1); 

   

 house2.addRooms(100).addRooms(500); 

 System.out.println(house2); 

} 

 
Output 

 
id: 2 rooms: 4 count: 1 

id: -1 rooms: 1 count: 2 

id: 2 rooms: 64 count: 2 

id: -1 rooms: 601 count: 2 

 

 
 
 

 
 
 
 
 
 

 
 
 
 


