\[a \div n = q \quad \text{quotient} \]
\[a \mod n = r \quad \text{remainder} \]
\[a \equiv b \mod n \]
\[a \text{ and } b \text{ have the same remainder} \]
\[n \mid a - b \]
\[a - b = kn \]
\[17 - 5 = 12 \]
\[12 \mod 6 = 0 \]
\[24 \equiv 14 \mod 6 \]
\[24 \equiv 6 \]
\[24 - 14 = 10 \]
\[6 \times 10\]

\[24 \not\equiv 14 \mod 6\]

\[\frac{n \mid a - b}{a - b = kn \uparrow} \quad a - b \text{ is a multiple of } n\]

\[k \in \mathbb{Z}\]

\[a \equiv b \mod n\]

\[c \equiv d \mod n\]

\[(a + b) \equiv (b + a) \mod n\]
\[7 \equiv 2 \pmod{5} \]
\[11 \equiv 1 \pmod{5} \]
\[(7 + 11) \equiv (2 + 1) \pmod{5} \]
\[18 \equiv 3 \pmod{5} \]

\[7^2 \equiv 2^2 \pmod{5} \]

\[7 \equiv b \pmod{7} \]
\[a \equiv b \pmod{n} \]
\[\eta \mid a - b \]

\[a - b = k \eta \]
\[a = b + k \eta \]
Quotient-Remainder Theorem

\[n = dq + r \]

Given any integer \(n \) and a positive integer \(d \), there exist unique integers \(q \) and \(r \) such that

\[n = dq + r \quad 0 \leq r < d \]

\(n = 54, \ d = 4 \)
\(q = 13, \ r = 2 \)
\(n = -54, \ d = 4 \)
\(-54 = 4 \times (-13) + 2 \)
\(n = 54, \ d = 70 \)
\(54 = 70 \times 0 + 54 \).

Div and mod.
\(n \ \text{div} \ d = q \)
\(n \ \text{mod} \ d = r \quad 0 \leq r < d \)
The necessary and sufficient condition for an integer n to be divisible by an integer d is that $n \mod d = 0$

$n = dq + r$

$r = n - dq$

\[n = d \cdot (n \div d) + n \mod d \]

$n \mod d = n - d \cdot (n \div d)$

$32 \div 9 = 3$

$32 \mod 9 = 5$

$= 32 - 9 \cdot 3$

$= 5$
\[n \mid a-b \quad \forall k \in \mathbb{Z} \]

\[a-b = kn \]

\[a = kn + b \]

\[n = dq + r \]

\[\text{quotient} \quad \text{remainder} \]

\[\text{div} \]

\[n = 54, \quad a = 4 \]

\[n = dq + r \]

\[\frac{54}{4} = 4 \times 13 + 2 \]

\[-54 = 4(-14) + 2 \]

\[54 = 70 \times 0 + 54 \]

\[q = 0, \quad r = 54 \]
\[d \mid n \quad n = 2q \]
\[2 \mid n \quad n = 2q + 1 \]
\[3 \mid n \quad 3q, 3q+1, 3q+2 \]
\[\text{Remainders} \]
\[4 \mid n \quad 4q, 4q+1, 4q+2, 4q+3 \]
\[k \mid n \quad kq, kq+1, \ldots, k-1 \]
\[2n^2 + 3n + 2 \] is not divisible by 5

\[n = 5q \]

\[n = 5q + 1 \text{ or } 5q + 2 \text{, or } 5q + 3 \]

\[5q + 4 \]

Proof: by cases

If \(n \) is not divisible by 5, then by the quotient remainder theorem, it can be one of the following cases.

1. \(n = 5q + 1 \)

 Squaring both sides,
 \[n^2 = (5q + 1)^2 = 25q^2 + 10q + 1 \]

 \[2n^2 = 50q^2 + 20q + 2 \] \[\text{(2)} \]

 \[3n = 15q + 3 \] \[\text{(3)} \]

 \[2n^2 + 3n + 2 = 50q^2 + 20q + 2 + 15q + 3 + 2 \]
\[= 50q^2 + 35q + 7 \]
\[= 5\left(10q^2 + 7q + 1\right) + 2 \]

\[n = \frac{d q + r}{5} \]

By quotient remainder theorem, it is not divisible by 5, since there is a remainder of 2.

(iii) \(n = 5q + 2 \)

Squaring on both sides:
\[n^2 = 25q^2 + 4 + 20q \]
\[2n^2 = 50q^2 + 40q + 8 \]
\[3n = 3(5q + 2) = 15q + 6 \]
\[2n^2 + 3n + 2 = 50q^2 + 55q + 14 + 2 \]
\[= 5(10q^2 + 11q + 3) + 1 \]

(iii) \[n = 5q + 3 \]
\[n^2 = 25q^2 + 30q + 9 \]
\[2n^2 = 50q^2 + 60q + 18 \]
\[3n = 15q + 9 \]
\[2n^2 + 3n + 2 = 50q^2 + 75q + 29 \]
\[= 5(10q^2 + 15q + 5) + 4 \]

(iv) \[n = 5q + 4 \]
\[n^2 = 25q^2 + 40q + 16 \]
\[2n^2 = 50q^2 + 80q + 32 \]
\[3n = 15q + 12 \]
\[2n^2 + 3n + 2 = 50q^2 + 95q + 46 \]
\[= 5(10q^2 + 19q + 9) + 1 \]
(iv) \(n = 5q \)

\[
\begin{align*}
\quad n^2 &= 25q^2 \\
2n^2 &= 50q^2 \\
3n &= 15q \\
2n^2 + 3n + 2 &= 50q^2 + 15q + 2 \\
&= 5(10q^2 + 3q) + 2
\end{align*}
\]

Since, 5 does not divide 2\(n^2 + 3n + 2\), for any of the cases according to the quotient remainder theorem, we conclude 2\(n^2 + 3n + 2\) is not divisible by 5.
Theorem: 3 does not divide η

$(\forall n \in \mathbb{Z}) \left[3 \nmid n \rightarrow \eta^2 \equiv 1 \mod 3 \right]$

Proof: by Cases:

Using modulo remainder $b = 1$

Theorem

$\eta = 3q + r$

Two possibilities (cases) are

either $r = 1$ or $r = 2$

Thus, $\eta = 3q + 1$ or $3q + 2$

We want to prove,

$3 \mid (\eta^2 - 1)$ by modulo congruent equivalence

$\eta^2 - 1$
Case (i) \(n = 3q + 1 \)
Squaring both sides
\[n^2 = (3q + 1)^2 \]
\[= 9q^2 + 6q + 1 \]
Subtract 1 on both sides
\[n^2 - 1 = 9q^2 + 6q \]
\[= 3(3q^2 + 2q) \]
By quotient remainder theorem \(3 \mid n^2 - 1 \)
Since there is no remainder.

Case (ii) \(n = 3q + 2 \)
Squaring both sides
\[n^2 = (3q + 2)^2 \]
\[= 9q^2 + 12q + 4 \]
\[n^2 = 9q^2 + 12q + 4 \]

Subtract 1 on both sides
\[n^2 - 1 = 9q^2 + 12q + 3 \]
\[= 3(3q^2 + 4q + 1) \]

By quotient remainder theorem \[3 \mid n^2 - 1 \]
Theorem: \(\lfloor x+y \rfloor = \lfloor x \rfloor + y \)

Proof:

Let \(\lfloor x \rfloor = n \).

By definition of floors,
\(n \leq x < n+1 \).

Add \(y \) to each side of this.

\(n + y \leq x + y < n + 1 \).

\(\lfloor x+y \rfloor = n + y \).

\(= \lfloor x \rfloor + y \)
Theorem: \(\text{floor of } \frac{n}{2} \)

Proof:

When \(n \) is even,

\[n = 2k, \quad k \in \mathbb{Z} \]

by the definition of even numbers.

\[k = \frac{n}{2} \]

Because the floor of an integer is the integer itself.

\[\lfloor \frac{n}{2} \rfloor = \lfloor k \rfloor = \lfloor \frac{n}{2} \rfloor = \frac{n}{2} \]
When \(n \) is odd, by definition of odd numbers
\[n = 2k + 1, \quad k \in \mathbb{Z} \]
\[\Rightarrow n - 1 = 2k \]
\[k = \frac{n - 1}{2} \]
\[\lfloor k \rfloor = \lfloor \frac{n - 1}{2} \rfloor = \frac{n - 1}{2} \]
because the floor of an integer is the integer itself

QED.
\[a_n = \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k^2} \]

When \(k = 1 \)
\[a_1 = \frac{(-1)^{1+1}}{1^2} = \frac{(-1)^2}{1^2} = \frac{1}{1} = 1 \]

\[a_2 = \frac{(-1)^{2+1}}{2^2} = \frac{-1}{4} \]

\[a_3 = \frac{(-1)^{3+1}}{3^2} = \frac{1}{9} \]

\[a_i = \frac{(-1)^{i+1}}{i^2} \]