CMSC 330: Organization of
Programming Languages

Lambda Calculus

CMSC 330 Spring 2019

Entscheidungsproblem “decision problem”

Is there an algorithm to determine if a
statement is true in all models of a theory?

CMSC 330 Spring 2019 2

Entscheidungsproblem “decision problem”

Algorithm, formalised

ll

Alonzo Church: Lambda calculus
An unsolvable problem of elementary number theory, Bul-
letin the American Mathematical Society, May 1935

Kurt Godel: Recursive functions

Stephen Kleene, General recursive functions of natural
numbers, Bulletin the American Mathematical Society,
July 1935

Alan M. Turing: Turing machines

On computable numbers, with an application to the
Entscheidungsproblem, Proceedings of the London Math-
ematical Society, received 25 May 1936

CMSC 330 Spring 2019 3

Turing Machine

Inhnite T ape
10,0017 1|17 0O I
2N

Fead HMYWrite Head

_ontral Uit

I e Y]

CMSC 330 Spring 2019

Turing Completeness

» A language L is Turing complete if it can compute
any function computable by a Turing Machine
» Show a language L is Turing complete if

* We can map every Turing machine to a program in L
> l.e., a program can be written to emulate a Turing machine

* Or, we can map any program in a known Turing-
complete language to a program in L

» Turing complete languages the “most powerful”

* Church-Turing thesis (1936): Computability by a Turing
Machine defines “effectively computable”

CMSC 330 Spring 2019

Programming Language Expressiveness

» S0 what language features are needed to express
all computable functions?
* What's a minimal language that is Turing Complete?

» Observe: some features exist just for convenience

* Multi-argument functions foo (a, b, c)
» Use currying or tuples

* Loops while (a <b) ...
> Use recursion
e Side effects a:.=1

» Use functional programming pass “heap” as an argument to

each function, return it when with function’s result
CMSC 330 Spring 2019 6

Lambda Calculus (A-calculus)

» Proposed in 1930s by &
e Alonzo Church - a4z
(born in Washingon DC!) A
» Formal system

* Designed to investigate functions & recursion
* For exploration of foundations of mathematics

» Now used as

* Tool for investigating computability

* Basis of functional programming languages
> Lisp, Scheme, ML, OCaml, Haskell...

CMSC 330 Spring 2019

Lambda Calculus Syntax

» A lambda calculus expression is defined as

e =X variable
| Ax.e abstraction (func def)
| ee application (func call)

> This grammar describes ASTs; not for parsing (ambiguous!)
» Lambda expressions also known as lambda terms

e AX.eis like (fun x -> e) in OCaml

That's it! Nothing but (higher-order) functions

CMSC 330 Spring 2019

Why Study Lambda Calculus?

» Itis a “core” language
* Very small but still Turing complete

» But with it can explore general ideas

* Language features, semantics, proof systems,
algorithms, ...

» Plus, higher-order, anonymous functions (aka
lambdas) are now very popular!
e C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi
(since 2009), Objective C, Java 8, Swift, Python,

Ruby (Procs), ... (and functional languages like
OCaml, Haskell, F#, ...)

CMSC 330 Spring 2019 9

Two Conventions

» Scope of A extends as far right as possible

* Subject to scope delimited by parentheses
* AX. Ay.Xy is same as AX.(Ay.(X Yy))

» Function application is left-associative
* Xyzis(xy)z
e Same rule as OCaml

CMSC 330 Spring 2019

10

OCaml Lambda Calc Interpreter

type id = string

> €T X type exp = Var of id
| Ax.e .
| Lam of id * exp
| ee | App of exp * exp
y Var \\yll
AX_X Lam (\\xll , Var \\xll)

AX-Ay.X y Lam (\\xll , (Lam(\\yll ’App (Var \\xll , Var \\yll))))

(AX.AY.X y) AX.X X 2pp
(Lam (“x”,Lam(“y” ,App (Var“x” ,Var“y”))),
Lam (“x”, App (Var “x”, Var “x”)))
CMSC 330 Spring 2019 11

Quiz #1

Ax. (y z) and Ax.y z are equivalent

A. True
B. False

CMSC 330 Spring 2019 12

Quiz #1

Ax. (y z) and Ax.y z are equivalent

A.True
B. False

CMSC 330 Spring 2019 13

Quiz #2

What is this term’'s AST? :YPe id = string
ype exp =

Var of id

Ax X X | Lam of id * exp
| App of exp * exp

. App (Lam (“x”, Var “x”), Var “x”)
Lam (Var “x”, Var “x”, Var “x”)
Lam (\\xll , App (Var \\xll ,Var \\x,,))

i App (Lam (“X”, APP (“X”, \\x//)))

ocowp

CMSC 330 Spring 2019 y

Quiz #2

What is this term’'s AST? EYPe id = string
ype exp =

Var of id

Ax X X | Lam of id * exp
| App of exp * exp

. App (Lam (“x”, Var “x”), Var “x”)
Lam (Var “x”, Var “x”, Var “x”)
Lam \\xll , App (Var \\xll ,Var \\x,,))

i App (Lam (“X”, APP (“X”, \\x//)))

oowp

CMSC 330 Spring 2019 15

Quiz #3

This term is equivalent to which of
the following?

AX.Xx a b

A. (Ax.x) (a b)
B. (((Ax.x) a) Db)
C. Ax. (x (a b))
D. (Ax. ((x a) b))

CMSC 330 Spring 2019

16

Quiz #3

This term is equivalent to which of
the following?

AX.Xx a b

A. (Ax.x) (a b)
B. (((Ax.x) a) Db)
C. Ax. (x (a b))
D. (Ax. ((x a) b))

CMSC 330 Spring 2019

17

Lambda Calculus Semantics

» Evaluation: All that's involved are function calls
(Ax.e1) e2

* Evaluate e1 with x replaced by e2

» This application is called beta reduction
* (Ax.e1) e2 — el{e2/x}

» e1{e2/x} is e1 with occurrences of x replaced by e2
» This operation is called substitution
- Replace formal parameters with actual arguments
- Instead of using environment to map formals to actuals

* We allow reductions to occur anywhere in a term
> Order reductions are applied does not affect final value!
» When a term cannot be reduced further it is in
beta normal form

CMSC 330 Spring 2019 18

Beta Reduction Example

» (AXAz.X2)Yy
— (AX.(Az.(x 2))) y

¢ \

— (MAX.(Az.(x 2))) ¥
(-

— Nz.(y 2)

// since A extends to right

/[apply (Ax.e1) e2 — e1{e2/x}
[l where el =Az.(Xz),e2 =y

// final result

» Equivalent OCaml code
e (funx->(funz->(x2z)))y — funz->(yz)

CMSC 330 Spring 2019

Parameters
e Formal
e Actual

19

Beta Reduction Examples

» (AXX)z — 2z

> (Axy) zZ— Y

» (AXXY)Zz— zYy

* A function that applies its argument to y

CMSC 330 Spring 2019

20

Beta Reduction Examples (cont.)

» (AXXY)(Az.2) > (Az.2)y >y

» (AXAY.XY)Z— Ayzy
* A curried function of two arguments

* Applies its first argument to its second

» (ACAY.XY) (Az.2Z) X —(Ay.(Az.zz)y)X — (AZ.zZ)X — XX

CMSC 330 Spring 2019 21

Beta Reduction Examples (cont.)

(AX.X (Ay.y)) (Uur) — (ur) (Ay.y)

(AX.(AW. X W)) (Az.2) — (Aw. (Ay.y) W) — (Aw.w)

CMSC 330 Spring 2019

22

Quiz #4

(Ax.y) z can be beta-reduced to

Ay

B.y z

C.z

D. cannot be reduced

CMSC 330 Spring 2019

23

Quiz #4

(Ax.y) z can be beta-reduced to

A.y

B.y z

C.z

D. cannot be reduced

CMSC 330 Spring 2019

24

Quiz #5

Which of the following reduces to Az. z7?

a) (Ay.Az.x)z
b) (Az.AX.2)y
c) (Ay.y) (AX.Az.z2)w
d) (Ay. AXx. z) z (Az. z)

CMSC 330 Spring 2019

25

Quiz #5

Which of the following reduces to Az. z7?

(Ay. Az. X) z

(Az. AX. Z2) y

(Ay.y) (AX. Az. z) w
(Ay. AX. z) z (Az. 2)

o O T QO
SN e N N

CMSC 330 Spring 2019 26

Static Scoping & Alpha Conversion

» Lambda calculus uses static scoping

» Consider the following

* (MXX(AXX))z—?
> The rightmost “x” refers to the second binding
* This is a function that
> Takes its argument and applies it to the identity function

» This function is “the same” as (Ax.x (Ay.y))

* Renaming bound variables consistently preserves meaning
» This is called alpha-renaming or alpha conversion

* EX.AXX=Ay.y=Az.z Ay.AXy = Az.AX.Z

CMSC 330 Spring 2019 27

Terminology: Free and Bound Variables

» A free variable is one that doesn’t have a
surrounding lambda that binds it
* In (Ay.y z x), the variables z and x are free
* In (Ay.Az.y z Xx), the variable x is free
* In (Ay.Az.y z), there are no free variables

» A bound variable is one that does have a
corresponding binder

* In (Ay.y z x), the variable y is bound (but not z and x)
* In (Ay.Az.y z Xx), the variables y and z are bound (not x)
* In (Ay.Az.y), the variable y is bound (z does not appear)

CMSC 330 Spring 2019 28

Quiz #6

Which of the following expressions is alpha
equivalent to (alpha-converts from)

(AX. Ay. XYy)y

a)Ay.yy
b)Az.y 2z
C)(AX.Az. x2)y
d) (AX. Ay. X y) z

A
A

CMSC 330 Spring 2019

Quiz #6

Which of the following expressions is alpha
equivalent to (alpha-converts from)

(AX. Ay. XYy)y

a)Ay.yy
b)Az.y 2z
c) (AX.Az.x2)y
d) (AX. Ay. X y) z

CMSC 330 Spring 2019

30

Defining Substitution

» Use recursion on structure of terms
 x{e/x}=e // Replace x by e
e yle/x} =y //'y is different than x, so no effect
(e1 e2){e/x} = (e1{e/x}) (e2{e/x})
// Substitute both parts of application
(Ax.e”){e/x} = Ax.e’

> In Ax.e’, the x is a parameter, and thus a local variable that is
different from other x’ s. Implements static scoping.

» S0 the substitution has no effect in this case, since the x being
substituted for is different from the parameter x that is in €’

(\y.e’ Ye/x} = ?
» The parameter y does not share the same name as x, the
variable being substituted for
> Is Ay.(e" {e/x}) correct? No...

CMSC 330 Spring 2019

31

Variable capture

» How about the following?
* (AMXAYXY)Yy —?

* When we replace y inside, we don’t want it to be

captured by the inner binding of y, as this violates
static scoping

° le., (AXXAYyXY)y#ZAy.yy

» Solution

* (AX.Ay.XYy)is “the same” as (AXx.Az.x z)
» Due to alpha conversion

* So alpha-convert (AX.Ay.X y) y to (AX.Az.x z) y first

> Now (AX.Azxz)y — Az.y z

CMSC 330 Spring 2019 32

Completing the Definition of Substitution

» Recall: we need to define (Ay.e'){e/x}

* We want to avoid capturing free occurrences of y in e

e Solution: alpha-conversion!
» Change y to a variable w that does not appear in e’ or e
(Such a w is called fresh)

» Replace all occurrences of y in €’ by w.
» Then replace all occurrences of x in €’ by e!

» Formally:
(Ay.e’{e/x} = Aw.(e{w/y}){e/x} (wis fresh WRT e and ¢€’)

CMSC 330 Spring 2019 33

Beta-Reduction, Again

» Whenever we do a step of beta reduction
* (Ax.e1) e2 — el{e2/x}
* We alpha-convert variables as necessary

* Sometimes performed implicitly (w/o showing
conversion)

» Examples
* (AXAY.XY)Yy=(AX.AzXxZ)y — Az.y Z Iy —z
* (AMX.X(AX.X))z=(Ay.y (AX.X))Zz—>z (AX.X) /I X —>Yy

CMSC 330 Spring 2019

34

OCaml Implementation: Free variables

(* compute free variables in e ¥*)
let rec fvs e =
match e with

Var x -> [x] “Naked” variable is free

| App (el,e2) -> (fvs el) @ (fvs e2)
| Lam (x,e0) -> Append free vars of sub-expressions

List.filter (fun y -> x <> y) (fvs e0)
Filter x from the free variables in e0

CMSC 330 Spring 2019 35

OCaml Implementation: Substitution

(* substitute e for y in m-- m{ely} *)
let rec subst e y m =
match m with

var x ->
if y = x then e (* substitute ¥*)
else m (* don’t subst *)

| App (el,e2) ->
App (subst e y el, subst e y e2)
| Lam (x,e0) -> ..

CMSC 330 Spring 2019 36

OCaml Impl: Substitution (cont'd)

(* substitute e for y in m-- m{ely} *)
let rec subst e y m = match m with ..
| Lam (x,e0) -> Shadowing blocks

if vy = x then m substitution
else if not (List.mem x (fvs e)) then

Lam (x, subst e y e0) gsafe: no capture possible
else Might capture; need to a-convert

let z = newvar() in (* fresh *)

let e0' = subst (Var z) x e0 in

Lam (z,subst e y e0')

CMSC 330 Spring 2019 37

OCaml Impl: Reduction

let rec reduce e =
match e with Straight B rule

App (Lam (x,e), e2) -> subst e2 x e
| App (el,e2) ->

let el' = reduce el in Reduce lhs of app
if el' '= el then App(el',Kh e2)
else App (el,reduce e2) Reduce rhs of app

| Lam (x,e) -> Lam (x, reduce e)
| -> e Reduce function body

nothing to do

CMSC 330 Spring 2019 38

Quiz #7

Beta-reducing the following term produces what
result?

(AX.X AY.y X) Yy

o0 WP
< << N
>
<
<
<

CMSC 330 Spring 2019

39

Quiz #7

Beta-reducing the following term produces what
result?

(AX.X AY.y X) Yy

A. y (Az.zy)
B. z (Ay.y 2)
C. y(Ay.yy)
D.yy

CMSC 330 Spring 2019

40

Quiz #8

Beta reducing the following term produces what
result?

AX.(AY. YY) W Z

a) AX. Ww Z
b))\x W Z

C) W
)

d) Does not reduce

CMSC 330 Spring 2019

41

Quiz #8

Beta reducing the following term produces what
result?

AX.(AY. YY) W Z

a) AX. ww z

b) AX. w Z

C)W 2z

d) Does not reduce

CMSC 330 Spring 2019

42

