
CMSC 330: Organization of
Programming Languages

Context Free Grammars

1CMSC 330 Fall 2018

2

Front End

Abstract
Syntax Tree

Back End

Source

Compiler / Interpreter

Code
Generator

An-
alyzer

Opt-
imizer

Architecture of Compilers, Interpreters

CMSC 330 Fall 2018

Front End – Scanner and Parser

4

Front End

Source Scanner Parser

AST

Token
Stream

• Scanner / lexer converts program source into
tokens (keywords, variable names, operators,
numbers, etc.) using regular expressions

• Parser converts tokens into an AST (abstract
syntax tree) using context free grammars

CMSC 330 Fall 2018

Context-Free Grammar (CFG)

A way of describing sets of strings (= languages)

• The notation L(G) denotes the language of strings

defined by grammar G

Example grammar G is S ® 0S | 1S | e
which says that string s’ ∊ L(G) iff

• s’ = e, or ∃s ∊ L(G) such that s’ = 0s, or s’ = 1s

Grammar is same as regular expression (0|1)*

• Generates / accepts the same set of strings

5CMSC 330 Fall 2018

CFGs Are Expressive

CFGs subsume REs, DFAs, NFAs
• There is a CFG that generates any regular language
• But: REs are often better notation for those languages

And CFGs can define languages regexps cannot
• S ® (S) | e // represents balanced pairs of ()�s

As a result, CFGs often used as the basis of
parsers for programming languages

6CMSC 330 Fall 2018

Parsing with CFGs

CFGs formally define languages, but they do
not define an algorithm for accepting strings
Several styles of algorithm; each works only for
less expressive forms of CFG
• LL(k) parsing
• LR(k) parsing
• LALR(k) parsing
• SLR(k) parsing

Tools exist for building parsers from grammars
• JavaCC, Yacc, etc.

7

We will discuss this next lecture

CMSC 330 Fall 2018

Formal Definition: Context-Free Grammar

A CFG G is a 4-tuple (Σ, N, P, S)

• Σ – alphabet (finite set of symbols, or terminals)
Ø Often written in lowercase

• N – a finite, nonempty set of nonterminal symbols
Ø Often written in UPPERCASE
Ø It must be that N ∩ Σ = ∅

• P – a set of productions of the form N → (Σ|N)*
Ø Informally: the nonterminal can be replaced by the string of

zero or more terminals / nonterminals to the right of the →
Ø Can think of productions as rewriting rules (more later)

• S ∊ N – the start symbol
8CMSC 330 Fall 2018

Notational Shortcuts

A production is of the form
• left-hand side (LHS) → right hand side (RHS)

If not specified
• Assume LHS of first production is the start symbol

Productions with the same LHS
• Are usually combined with |

If a production has an empty RHS
• It means the RHS is ε

S → aBc // S is start symbol
A → aA

| b // A → b
| // A → e

9

S → aBc

CMSC 330 Fall 2018

Backus-Naur Form
Context-free grammar production rules are also
called Backus-Naur Form or BNF
• Designed by John Backus and Peter Naur

Ø Chair and Secretary of the Algol committee in the early
1960s. Used this notation to describe Algol in 1962

A production A → B c D is written in BNF as
<A> ::= c <D>
• Non-terminals written with angle brackets and uses

::= instead of →
• Often see hybrids that use ::= instead of → but drop

the angle brackets on non-terminals

10CMSC 330 Fall 2018

Generating Strings

We can think of a grammar as generating
strings by rewriting
Example grammar G
S ® 0S | 1S | e
Generate string 011 from G as follows:
S ⇒ 0S // using S ® 0S
⇒ 01S // using S ® 1S
⇒ 011S // using S ® 1S
⇒ 011 // using S ® e

11CMSC 330 Fall 2018

Accepting Strings (Informally)

Checking if s ∈ L(G) is called acceptance
• Algorithm: Find a rewriting starting from G’s start

symbol that yields s
• A rewriting is some sequence of productions

(rewrites) applied starting at the start symbol
Ø 011 ∈ L(G) according to the previous rewriting

Terminology
• Such a sequence of rewrites is a derivation or parse
• Discovering the derivation is called parsing

12CMSC 330 Fall 2018

