CMSC 330: Organization of
Programming Languages

Context Free Grammars

CMSC 330 Fall 2018

Architecture of Compilers, Interpreters

j> >

Abstract
Syntax Tree

Front End

Opt- Code
imizer || Generator
Back End

CMSC 330 Fall 2018

Compiler / Interpreter

Front End — Scanner and Parser

Front End
AST

« Scanner / lexer converts program source into
tokens (keywords, variable names, operators,
numbers, etc.) using regular expressions

« Parser converts tokens into an AST (abstract
syntax tree) using context free grammars

CMSC 330 Fall 2018 4

Context-Free Grammar (CFG)

» A way of describing sets of strings (= languages)

* The notation L(G) denotes the language of strings
defined by grammar G

» Example grammarGisS —>0S|1S | ¢
which says that string s’ € L(G) iff
e s=g,ords € L(G)suchthats’=0s,0rs’ =1s

» Grammar is same as regular expression (0|1)*
* Generates / accepts the same set of strings

CMSC 330 Fall 2018 5

CFGs Are Expressive

» CFGs subsume REs, DFAs, NFAs

* There is a CFG that generates any regular language
* But: REs are often better notation for those languages

» And CFGs can define languages regexps cannot
* S (S)]|e [/lrepresents balanced pairs of ()’ s

» As a result, CFGs often used as the basis of
parsers for programming languages

CMSC 330 Fall 2018 6

Parsing with CFGs

» CFGs formally define languages, but they do
not define an algorithm for accepting strings

» Several styles of algorithm; each works only for
less expressive forms of CFG
* LL(k) parsing - We will discuss this next lecture
* LR(k) parsing
* LALR(K) parsing
* SLR(k) parsing

» Tools exist for building parsers from grammars
* JavaCC, Yacc, etc.

CMSC 330 Fall 2018

Formal Definition: Context-Free Grammar

» ACFG Gis a4-tuple (2, N, P, S)

* 2 — alphabet (finite set of symbols, or terminals)
» Often written in lowercase

* N — a finite, nonempty set of nonterminal symbols

> Often written in UPPERCASE
> tmustbethatNN 2 =Y

* P — a set of productions of the form N — (2]N)*

» Informally: the nonterminal can be replaced by the string of
zero or more terminals / nonterminals to the right of the —

» Can think of productions as rewriting rules (more later)

* S € N — the start symbol

CMSC 330 Fall 2018

Notational Shortcuts

S — aBc // S is start symbol
A — aA

| b IIA—Db

| IIA— g

» A production is of the form
* l|eft-hand side (LHS) — right hand side (RHS)

» If not specified
* Assume LHS of first production is the start symbol

» Productions with the same LHS
* Are usually combined with |

» If a production has an empty RHS

e |[tmeansthe RHS is ¢

CMSC 330 Fall 2018

Backus-Naur Form

» Context-free grammar production rules are also
called Backus-Naur Form or BNF

* Designed by John Backus and Peter Naur

» Chair and Secretary of the Algol committee in the early
1960s. Used this notation to describe Algol in 1962

» A production A — B ¢ D is written in BNF as
<A> =c <D>

* Non-terminals written with angle brackets and uses
.= instead of —

* Often see hybrids that use ::= instead of — but drop
the angle brackets on non-terminals

CMSC 330 Fall 2018 10

Generating Strings

» We can think of a grammar as generating
strings by rewriting
» Example grammar G
S—>0S|1S ¢
» Generate string 011 from G as follows:
S=0S // using S —» 0S
= 01S //using S — 1S

= 011S //using S > 1S
= 011 //using S — ¢

CMSC 330 Fall 2018

11

Accepting Strings (Informally)

» Checking ifs € L(G) is called acceptance

* Algorithm: Find a rewriting starting from G’s start
symbol that yields s

* A rewriting is some sequence of productions
(rewrites) applied starting at the start symbol
» 011 € L(G) according to the previous rewriting

» Terminology
e Such a sequence of rewrites is a derivation or parse
* Discovering the derivation is called parsing

CMSC 330 Fall 2018 12

