CMSC 330: Organization of Programming Languages

Parsing
Recall: Front End Scanner and Parser

- **Scanner / lexer / tokenizer** converts program source into **tokens** (keywords, variable names, operators, numbers, etc.) with **regular expressions**
- **Parser** converts tokens into an **AST** (abstract syntax tree) using **context free grammars**
Scanning ("tokenizing")

- Converts textual input into a stream of tokens
 - These are the terminals in the parser’s CFG
 - Example tokens are keywords, identifiers, numbers, punctuation, etc.

- Tokens determined with regular expressions
 - Identifiers match regexp [a-zA-Z_][a-zA-Z0-9_]*

- Simplest case: a token is just a string
 - type token = string
 - But representation might be more full featured

- Scanner typically ignores/eliminates whitespace
Simple Scanner in OCaml

type token = string

let tokenize (s:string) = ...
 (* returns token list *)

;,

tokenize "this is a string" = ["this"; "is"; "a"; "string"]
More Interesting Scanner

```ml
type token =
  Tok_Num of char |
  Tok_Sum |
  Tok_END

let tokenize (s:string) = ...
  (* returns token list *)

let re_num = Str.regexp "[0-9]" (* single digit *)
let re_add = Str.regexp "+"
let tokenize str =
  let rec tok pos s =
    if pos >= String.length s then
      [Tok_END]
    else
      if (Str.string_match re_num s pos) then
        let token = Str.matched_string s in
        (Tok_Num token.[0])::(tok (pos+1) s)
      else if (Str.string_match re_add s pos) then
        Tok_Sum::(tok (pos+1) s)
      else
        raise (IllegalExpression "tokenize")
    in
    tok 0 str
```

```
tokenize "1+2" =
  [Tok_Num '1';
   Tok_Sum;
   Tok_Num '2';
   Tok_END]
```

Uses `Str` library module for regexps
Implementing Parsers

- Many efficient techniques for parsing
 - i.e., for turning strings into parse trees
 - Examples
 - $LL(k)$, $SLR(k)$, $LR(k)$, $LALR(k)$…
 - Take CMSC 430 for more details

- One simple technique: recursive descent parsing
 - This is a top-down parsing algorithm

- Other algorithms are bottom-up
Top-Down Parsing (Intuition)

E → id = n | { L }
L → E ; L | ε

(Assume: id is variable name, n is integer)

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }
Bottom-up Parsing (Intuition)

E → id = n | { L }
L → E ; L | ε

Show parse tree for
\{ x = 3 ; \{ y = 4 ; \} ; \}

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different
BU Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)
- Example grammar
 - \(S \rightarrow aA, A \rightarrow Bc, B \rightarrow b \)
- Example parse
 - \(abc \rightarrow aBc \rightarrow aA \rightarrow S \)
 - Derivation happens in reverse
- Something to look forward to in CMSC 430
- Complicated to use; requires tool support
 - \textit{Bison, yacc} produce shift-reduce parsers from CFGs
Tradeoffs

- Recursive descent parsers
 - Easy to write
 - The formal definition is a little clunky, but if you follow the code then it’s almost what you might have done if you weren't told about grammars formally
 - Fast
 - Can be implemented with a simple table

- Shift-reduce parsers handle more grammars
 - Error messages may be confusing

- Most languages use hacked parsers (!)
 - Strange combination of the two
Recursive Descent Parsing

- **Goal**
 - Determine if we can produce the string to be parsed from the grammar's start symbol

- **Approach**
 - Recursively replace nonterminal with RHS of production

- At each step, we'll keep track of two facts
 - What tree node are we trying to match?
 - What is the lookahead (next token of the input string)?
 - Helps guide selection of production used to replace nonterminal
Recursive Descent Parsing (cont.)

At each step, 3 possible cases

• If we’re trying to match a terminal
 ➢ If the lookahead is that token, then succeed, advance the lookahead, and continue

• If we’re trying to match a nonterminal
 ➢ Pick which production to apply based on the lookahead

• Otherwise fail with a parsing error
Parsing Example

E → id = n | { L }
L → E ; L | ε

• Here n is an integer and id is an identifier

One input might be

• { x = 3; { y = 4; }; }
• This would get turned into a list of tokens
 { x = 3 ; { y = 4 ; } ; }
• And we want to turn it into a parse tree
Parsing Example (cont.)

\[
E \rightarrow \text{id} = n \mid \{ L \}
\]

\[
L \rightarrow E ; L \mid \epsilon
\]

\{ x = 3 ; \{ y = 4 ; \} ; \}

lookahead
Recursive Descent Parsing (cont.)

- **Key step**
 - Choosing which production should be selected

- **Two approaches**
 - **Backtracking**
 - Choose some production
 - If fails, try different production
 - Parse fails if all choices fail
 - **Predictive parsing (what we will do)**
 - Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST
First Sets

Motivating example

- The lookahead is x
- Given grammar $S \rightarrow xyz \mid abc$
 - Select $S \rightarrow xyz$ since 1st terminal in RHS matches x
- Given grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - Select $S \rightarrow A$, since A can derive string beginning with x

In general

- Choose a production that can derive a sentential form beginning with the lookahead
- Need to know what terminal may be first in any sentential form derived from a nonterminal / production
First Sets

Definition

• $\text{First}(\gamma)$, for any terminal or nonterminal γ, is the set of initial terminals of all strings that γ may expand to.
• We’ll use this to decide what production to apply.

Examples

• Given grammar $S \rightarrow \text{xyz} \mid \text{abc}$
 $\text{First}(\text{xyz}) = \{ x \}$, $\text{First}(\text{abc}) = \{ a \}$
 $\text{First}(S) = \text{First}(\text{xyz}) \cup \text{First}(\text{abc}) = \{ x, a \}$

• Given grammar $S \rightarrow A \mid B$ $A \rightarrow x \mid y$ $B \rightarrow z$
 $\text{First}(x) = \{ x \}$, $\text{First}(y) = \{ y \}$, $\text{First}(A) = \{ x, y \}$
 $\text{First}(z) = \{ z \}$, $\text{First}(B) = \{ z \}$
 $\text{First}(S) = \{ x, y, z \}$
Calculating First(γ)

- For a terminal a
 - \(\text{First}(a) = \{ a \} \)

- For a nonterminal N
 - If \(N \rightarrow \varepsilon \), then add \(\varepsilon \) to \(\text{First}(N) \)
 - If \(N \rightarrow \alpha_1 \alpha_2 \ldots \alpha_n \), then (note the \(\alpha_i \) are all the symbols on the right side of one single production):
 - Add \(\text{First}(\alpha_1\alpha_2 \ldots \alpha_n) \) to \(\text{First}(N) \), where \(\text{First}(\alpha_1\alpha_2 \ldots \alpha_n) \) is defined as
 - \(\text{First}(\alpha_1) \) if \(\varepsilon \not\in \text{First}(\alpha_1) \)
 - Otherwise \((\text{First}(\alpha_1) − \varepsilon) \cup \text{First}(\alpha_2 \ldots \alpha_n) \)
 - If \(\varepsilon \in \text{First}(\alpha_i) \) for all \(i, 1 \leq i \leq k \), then add \(\varepsilon \) to \(\text{First}(N) \)
First() Examples

E → id = n | { L }
L → E ; L | ε

First(id) = { id }
First("=") = { "=" }
First(n) = { n }
First("{"") = { "{" }
First("}\") = { "}" }
First(";") = { ";" }
First(E) = { id, "{" }
First(L) = { id, "{" , ε }

E → id = n | { L } | ε
L → E ; L

First(id) = { id }
First("=") = { "=" }
First(n) = { n }
First("{"") = { "{" }
First("}\") = { "}" }
First(";") = { ";" }
First(E) = { id, "{" , ε }
First(L) = { id, "{" , ";" }
Quiz #1

Given the following grammar:

\[
S \rightarrow aAB \\
A \rightarrow CBC \\
B \rightarrow b \\
C \rightarrow cC \mid \varepsilon
\]

What is First(S)?

A. \{a\} \\
B. \{b, c\} \\
C. \{b\} \\
D. \{c\}
Quiz #1

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \varepsilon
\end{align*}
\]

What is First(S)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #2

Given the following grammar:

```
S  ->  aAB
A  ->  CBC
B  ->  b
C  ->  cc | ε
```

What is First(B)?
A. {a}
B. {b}
C. {b, c}
D. {c}
Quiz #2

Given the following grammar:

What is First(B)?

A. \{a\}
B. \{b\}
C. \{b, c\}
D. \{c\}
Quiz #3

Given the following grammar:

What is $\text{First}(A)$?

A. \{a\}
B. \{b\}
C. \{c\}
D. \{b, c\}
Quiz #3

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \varepsilon
\end{align*}
\]

What is \textbf{First}(A)?

A. \{a\}
B. \{b\}
C. \{c\}
D. \{b,c\}
Recursive Descent Parser Implementation

- For all terminals, use function `match_tok` a
 - If lookahead is a it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Fails with a parse error if lookahead is not a

- For each nonterminal N, create a function `parse_N`
 - Called when we’re trying to parse a part of the input which corresponds to (or can be derived from) N
 - `parse_S` for the start symbol S begins the parse
match_tok in OCaml

let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
 match !tok_list with
 (* checks lookahead; advances on match *)
 | (h::t) when a = h -> tok_list := t
 | _ -> raise (ParseError "bad match")

 (* used by parse_X *)
let lookahead () =
 match !tok_list with
 [] -> raise (ParseError "no tokens")
 | (h::t) -> h
Parsing Nonterminals

- The body of `parse_N` for a nonterminal `N` does the following
 - Let `N → β_1 | ... | β_k` be the productions of `N`
 - Here `β_i` is the entire right side of a production- a sequence of terminals and nonterminals
 - Pick the production `N → β_i` such that the lookahead is in `First(β_i)`
 - It must be that `First(β_i) ∩ First(β_j) = ∅` for `i ≠ j`
 - If there is no such production, but `N → ε` then return
 - Otherwise fail with a parse error
 - Suppose `β_i = α_1 α_2 ... α_n`. Then call `parse_α_1(); ... ; parse_α_n()` to match the expected right-hand side, and return
Example Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - $\text{First}(xyz) = \{ x \}$, $\text{First}(abc) = \{ a \}$

- Parser

```ocaml
let parse_S () =
  if lookahead () = "x" then (* $S \rightarrow xyz$ *)
    (match_tok "x";
     match_tok "y";
     match_tok "z")
  else if lookahead () = "a" then (* $S \rightarrow abc$ *)
    (match_tok "a";
     match_tok "b";
     match_tok "c")
  else raise (_ParseError_ "parse_S")
```
Another Example Parser

- Given grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - First(A) = \{ x, y \}, First(B) = \{ z \}

- Parser:

 let rec parse_S () =
 if lookahead () = "x" ||
 lookahead () = "y" then
 parse_A () (* S → A *)
 else if lookahead () = "z" then
 parse_B () (* S → B *)
 else raise (ParseError "parse_S")

 and parse_A () =
 if lookahead () = "x" then
 match_tok "x" (* A → x *)
 else if lookahead () = "y" then
 match_tok "y" (* A → y *)
 else raise (ParseError "parse_A")

 and parse_B () = ...

Example

E → id = n | { L }
L → E ; L | ε

First(E) = { id, "{" }

Parser:

let rec parse_E () =
 if lookahead () = "id" then
 (* E → id = n *)
 (match_tok "id";
 match_tok "=";
 match_tok "n")
 else if lookahead () = "{" then
 (* E → { L } *)
 (match_tok "{";
 parse_L ();
 match_tok "}")
 else raise (ParseError "parse_A")

and parse_L () =
 if lookahead () = "id"
 || lookahead () = "{" then
 (* L → E ; L *)
 (parse_E ()
 match_tok ";";
 parse_L ())
 else
 (* L → ε *)
 ()
Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree (we’ll consider ASTs later)

Examples

- Grammar
 \[S \rightarrow xyz \]
 \[S \rightarrow abc \]

- String “xyz”

```plaintext
parse_S ()
  match_tok “x”
  match_tok “y”
  match_tok “z”
```

- Grammar
 \[S \rightarrow A \mid B \]
 \[A \rightarrow x \mid y \]
 \[B \rightarrow z \]

- String “x”

```plaintext
parse_S ()
  parse_A ()
  match_tok “x”
```
Things to Notice (cont.)

- This is a **predictive** parser
 - Because the lookahead determines exactly which production to use
- This parsing strategy may fail on some grammars
 - Production First sets overlap
 - Production First sets contain ϵ
 - Possible infinite recursion
- Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar
Conflicting First Sets

Consider parsing the grammar $E \rightarrow ab \mid ac$

- $First(ab) = a$
- $First(ac) = a$

Parser fails whenever $A \rightarrow \alpha_1 \mid \alpha_2$ and

- $First(\alpha_1) \cap First(\alpha_2) \neq \epsilon$ or \emptyset

Solution

- Rewrite grammar using left factoring
Left Factoring Algorithm

- **Given grammar**
 - \(A \rightarrow x\alpha_1 \mid x\alpha_2 \mid \ldots \mid x\alpha_n \mid \beta \)

- **Rewrite grammar as**
 - \(A \rightarrow xL \mid \beta \)
 - \(L \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n \)

- **Repeat as necessary**

- **Examples**
 - \(S \rightarrow ab \mid ac \quad \Rightarrow S \rightarrow aL \quad L \rightarrow b \mid c \)
 - \(S \rightarrow abcA \mid abB \mid a \quad \Rightarrow S \rightarrow aL \quad L \rightarrow bcA \mid bB \mid \varepsilon \)
 - \(L \rightarrow bcA \mid bB \mid \varepsilon \quad \Rightarrow L \rightarrow bL' \mid \varepsilon \quad L' \rightarrow cA \mid B \)
Alternative Approach

- Change structure of parser
 - First match common prefix of productions
 - Then use lookahead to chose between productions

- Example
 - Consider parsing the grammar \(E \rightarrow a+b \mid a\times b \mid a \)

```ocaml
let parse_E () =
  match_tok "a"; (* common prefix *)
  if lookahead () = "+" then (* E -> a+b *)
    (match_tok "+";
     match_tok "b")
  else if lookahead () = "*" then (* E -> a*b *)
    (match_tok "*";
     match_tok "b")
  else () (* E -> a *)
```
Left Recursion

Consider grammar \(S \rightarrow Sa | \varepsilon \)

• Try writing parser

```ocaml
let rec parse_S () =
  if lookahead () = “a” then
    (parse_S ();
     match tok “a”) (* S \rightarrow Sa *)
  else ()
```

• Body of `parse_S ()` has an infinite loop!
 ➢ Infinite loop occurs in grammar with left recursion
Right Recursion

- Consider grammar $S \rightarrow aS \mid \varepsilon$

 • Try writing parser

    ```
    let rec parse_S () =
      if lookahead () = "a" then
        (match_tok "a";
          parse_S ()); (* S \rightarrow aS *)
      else ()
    ``

  • Will `parse_S()` infinite loop?
    
    Ø Invoking `match_tok` will advance `lookahead`, eventually stop

  • Top down parsers handles grammar w/ right recursion
Algorithm To Eliminate Left Recursion

- Given grammar
  - $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_n \mid \beta$
    - $\beta$ must exist or no derivation will yield a string

- Rewrite grammar as (repeat as needed)
  - $A \rightarrow \beta L$
  - $L \rightarrow \alpha_1 L \mid \alpha_2 L \mid \ldots \mid \alpha_n L \mid \epsilon$

- Replaces left recursion with right recursion

- Examples
  - $S \rightarrow Sa \mid \epsilon$  $\Rightarrow S \rightarrow L \quad L \rightarrow aL \mid \epsilon$
  - $S \rightarrow Sa \mid Sb \mid c$  $\Rightarrow S \rightarrow cL \quad L \rightarrow aL \mid bL \mid \epsilon$
What Does the following code parse?

```ocaml
let parse_S () =
 if lookahead () = "a" then
 (match_tok "a";
 match_tok "x";
 match_tok "y")
 else if lookahead () = "q" then
 match_tok "q"
 else
 raise (ParseError "parse_S")
```

A. \( S \rightarrow axyq \)
B. \( S \rightarrow a \mid q \)
C. \( S \rightarrow aaxy \mid qq \)
D. \( S \rightarrow axy \mid q \)
Quiz #4

What Does the following code parse?

```
let parse_S () =
 if lookahead () = "a" then
 (match_tok "a";
 match_tok "x";
 match_tok "y")
 else if lookahead () = "q" then
 match_tok "q"
 else
 raise (ParseError "parse_S")
```

A. S -> axyq  
B. S -> a | q  
C. S -> aaxy | qq  
D. S -> axy | q
Quiz #5

- What Does the following code parse?

```ocaml
let rec parse_S () =
 if lookahead () = "a" then
 (match_tok "a";
 parse_S ())
 else if lookahead () = "q" then
 (match_tok "q";
 match_tok "p")
 else
 raise (ParseError "parse_S")
```

A. S -> aS | qp  
B. S -> a | S | qp  
C. S -> aqSp  
D. S -> a | q
Quiz #5

What Does the following code parse?

```ocaml
let rec parse_S () =
 if lookahead () = "a" then
 (match_tok "a";
 parse_S ())
 else if lookahead () = "q" then
 (match_tok "q";
 match_tok "p")
 else
 raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Can recursive descent parse this grammar?

\[
\begin{align*}
S & \rightarrow aBa \\
B & \rightarrow bC \\
C & \rightarrow \varepsilon | Cc
\end{align*}
\]

A. Yes
B. No
Quiz #6

Can recursive descent parse this grammar?

\[
\begin{align*}
S &\rightarrow aBa \\
B &\rightarrow bC \\
C &\rightarrow \varepsilon \mid Cc
\end{align*}
\]

A. Yes
B. No
(due to left recursion)
What’s Wrong With Parse Trees?

- Parse trees contain too much information
  - Example
    - Parentheses
    - Extra nonterminals for precedence
  - This extra stuff is needed for parsing

- But when we want to reason about languages
  - Extra information gets in the way (too much detail)
Abstract Syntax Trees (ASTs)

- An **abstract syntax tree** is a more compact, abstract representation of a parse tree, with only the essential parts.
Abstract Syntax Trees (cont.)

- Intuitively, ASTs correspond to the data structure you’d use to represent strings in the language
  - Note that grammars describe trees
    - So do OCaml datatypes, as we have seen already
  - $E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E)$

```
 *
 / \
 c +
 / \ /
 b d
```
Producing an AST

To produce an AST, we can modify the `parse()` functions to construct the AST along the way

- `match_tok a` returns an AST node (leaf) for `a`
- `parse_A` returns an AST node for `A`
  - AST nodes for RHS of production become children of LHS node

Example

- `S → aA`

```ocaml
let rec parse_S () =
 if lookahead () = "a" then
 let n1 = match_tok "a" in
 let n2 = parse_A () in
 Node(n1, n2)
 else raise ParseError "parse_S"
```

```plaintext
S / \ |
 a A |
```

Example

- `S → aA`

```ocaml
let rec parse_S () =
 if lookahead () = "a" then
 let n1 = match_tok "a" in
 let n2 = parse_A () in
 Node(n1, n2)
 else raise ParseError "parse_S"
```

```plaintext
S / \ |
 a A |
```
The Compilation Process

Lexing  \rightarrow  Parsing  \rightarrow  ALST  \rightarrow  Intermediate Code Generation  \rightarrow  Optimization

source program  \rightarrow  Compiler  \rightarrow  target program

regexps DFAs  CFGs PDAs

(may not actually be constructed)