CMSC 330: Organization of Programming Languages

Operational Semantics
Formal Semantics of a Prog. Lang.

- Mathematical description of the meaning of programs written in that language
 - What a program computes, and what it does

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
Styles of Semantics

- **Denotational semantics**: translate programs into math!
 - Usually: convert programs into functions mapping inputs to outputs
 - Analogous to compilation

- **Operational semantics**: define how programs execute
 - Often on an abstract machine (mathematical model of computer)
 - Analogous to interpretation

- **Axiomatic semantics**
 - Describe programs as **predicate transformers**, i.e. for converting initial assumptions into guaranteed properties after execution
 - Preconditions: assumed properties of initial states
 - Postcondition: guaranteed properties of final states
 - Logical rules describe how to systematically build up these transformers from programs
This Course: Operational Semantics

- We will show how an operational semantics may be defined for Micro-Ocaml
 - And develop an interpreter for it, along the way

- Approach: use rules to define a judgment
 \[e \Rightarrow v \]
 - Says “\(e \) evaluates to \(v \)”
 - \(e \): expression in Micro-OCaml
 - \(v \): value that results from evaluating \(e \)
Definitional Interpreter

- It turns out that the rules for judgment \(e \Rightarrow v \) can be easily turned into idiomatic OCaml code
 - The language’s expressions \(e \) and values \(v \) have corresponding OCaml datatype representations \(\text{exp} \) and \(\text{value} \)
 - The semantics is represented as a function

\[
\text{eval}: \text{exp} \rightarrow \text{value}
\]

- This way of presenting the semantics is referred to as a definitional interpreter
 - The interpreter defines the language’s meaning
Micro-OCaml Expression Grammar

\[e ::= x | n | e + e | \text{let } x = e \text{ in } e \]

- \(e, x, n\) are \textit{meta-variables} that stand for categories of syntax
 - \(x\) is any identifier (like \(z, y, \text{foo}\))
 - \(n\) is any numeral (like \(1, 0, 10, -25\))
 - \(e\) is any expression (here defined, recursively!)

\textit{Concrete syntax} of actual expressions in \textbf{black}

- Such as \texttt{let}, \texttt{+}, \texttt{z}, \texttt{foo}, \texttt{in}, …

\(::=\) and \(\mid\) are \textit{meta-syntax} used to define the syntax of a language (part of “Backus-Naur form,” or BNF)
Micro-OCaml Expression Grammar

\[e ::= x | n | e + e | \text{let } x = e \text{ in } e \]

Examples

• 1 is a numeral \(n \) which is an expression \(e \)
• 1+z is an expression \(e \) because
 - 1 is an expression \(e \),
 - \(z \) is an identifier \(x \), which is an expression \(e \), and
 - \(e + e \) is an expression \(e \)
• let \(z = 1 \) in 1+z is an expression \(e \) because
 - \(z \) is an identifier \(x \),
 - 1 is an expression \(e \),
 - 1+z is an expression \(e \), and
 - let \(x = e \) in \(e \) is an expression \(e \)
Abstract Syntax = Structure

Here, the grammar for e is describing its abstract syntax tree (AST), i.e., e’s structure

\[
e ::= x | n | e + e | \text{let } x = e \text{ in } e
\]

corresponds to (in definitional interpreter)

```plaintext
type id = string
(type num = int
(type exp =
    | Ident of id (* x *)
    | Num of num (* n *)
    | Plus of exp * exp (* e+e *)
    | Let of id * exp * exp (* let x=e in e *)
)```

Aside: Real Interpreters

Parser

Optional Static Analyzer (e.g., Type Checker)

Front End

Abstract Syntax Tree (AST), a kind of intermediate representation (IR)

Back End

Evaluator

the part we write in the definitional interpreter

Source → Interpreter → Back End

Input

Output
The parsing problem is how to convert program text into an AST, i.e., a value of the type below

- We defer worrying about this problem until later

  - Hint: Relates to using something like regular expressions to read in text and construct values like the following from it

```plaintext
type id = string
type num = int
type exp =
 | Ident of id
 | Num of num
 | Plus of exp * exp
 | Let of id * exp * exp
```
Values

An expression’s final result is a value. What can values be?

\[ v ::= n \]

Just numerals for now

- In terms of an interpreter’s representation:
  \[ \text{type } \text{value} = \text{int} \]
- In a full language, values \( v \) will also include booleans (true, false), strings, functions, …
Defining the Semantics

- Use rules to define judgment $e \Rightarrow v$

- Judgments are just statements. We use rules to prove that the statement is true.
  - $1+3 \Rightarrow 4$
    - $1+3$ is an expression $e$, and $4$ is a value $v$
    - This judgment claims that $1+3$ evaluates to $4$
    - We use rules to prove it to be true
  - let foo=1+2 in foo+5 $\Rightarrow$ 8
  - let f=1+2 in let z=1 in f+z $\Rightarrow$ 4
Rules as English Text

- Suppose $e$ is a numeral $n$
  - Then $e$ evaluates to itself, i.e., $n \Rightarrow n$

- Suppose $e$ is an addition expression $e_1 + e_2$
  - If $e_1$ evaluates to $n_1$, i.e., $e_1 \Rightarrow n_1$
  - If $e_2$ evaluates to $n_2$, i.e., $e_2 \Rightarrow n_2$
  - Then $e$ evaluates to $n_3$, where $n_3$ is the sum of $n_1$ and $n_2$
  - I.e., $e_1 + e_2 \Rightarrow n_3$

- Suppose $e$ is a let expression $\text{let } x = e_1 \text{ in } e_2$
  - If $e_1$ evaluates to $v$, i.e., $e_1 \Rightarrow v_1$
  - If $e_2\{v_1/x\}$ evaluates to $v_2$, i.e., $e_2\{v_1/x\} \Rightarrow v_2$
    - Here, $e_2\{v_1/x\}$ means “the expression after substituting occurrences of $x$ in $e_2$ with $v_1$”
  - Then $e$ evaluates to $v_2$, i.e., $\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2$
We can use a more compact notation for the rules we just presented: **rules of inference**

- Has the following format

  \[
  \begin{array}{c}
  H_1 \quad \ldots \quad H_n \\
  \hline \\
  C 
  \end{array}
  \]

- Says: if the conditions \( H_1 \ldots H_n \) ("hypotheses") are true, then the condition \( C \) ("conclusion") is true

- If \( n=0 \) (no hypotheses) then the conclusion automatically holds; this is called an axiom

We are using inference rules where \( C \) is our judgment about evaluation, i.e., that \( e \Rightarrow v \)
Rules of Inference: Num and Sum

- Suppose $e$ is a numeral $n$
  - Then $e$ evaluates to itself, i.e., $n \Rightarrow n$

- Suppose $e$ is an addition expression $e_1 + e_2$
  - If $e_1$ evaluates to $n_1$, i.e., $e_1 \Rightarrow n_1$
  - If $e_2$ evaluates to $n_2$, i.e., $e_2 \Rightarrow n_2$
  - Then $e$ evaluates to $n_3$, where $n_3$ is the sum of $n_1$ and $n_2$
  - I.e., $e_1 + e_2 \Rightarrow n_3$
Rules of Inference: Let

Suppose $e$ is a let expression $\text{let } x = e_1 \text{ in } e_2$

- If $e_1$ evaluates to $v$, i.e., $e_1 \Rightarrow v_1$
- If $e_2\{v_1/x\}$ evaluates to $v_2$, i.e., $e_2\{v_1/x\} \Rightarrow v_2$
- Then $e$ evaluates to $v_2$, i.e., $\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2$

\[
\begin{array}{c|c}
  e_1 \Rightarrow v_1 & e_2\{v_1/x\} \Rightarrow v_2 \\
  \hline
  \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2
\end{array}
\]
Derivations

- When we apply rules to an expression in succession, we produce a derivation
  - It’s a kind of tree, rooted at the conclusion

- Produce a derivation by goal-directed search
  - Pick a rule that could prove the goal
  - Then repeatedly apply rules on the corresponding hypotheses

  ➢ Goal: Show that \( \text{let } x = 4 \text{ in } x+3 \Rightarrow 7 \)
Derivations

\[
\begin{align*}
\text{let } x = 4 \text{ in } x+3 & \Rightarrow 4 \\
& \Rightarrow x+3\{4/x\} \\
& \Rightarrow 3 \\
& \Rightarrow 4 \\
\end{align*}
\]

\[
\begin{align*}
\text{let } x = 4 \text{ in } x+3 & \Rightarrow 7 \\
4 & \Rightarrow 4 \\
3 & \Rightarrow 3 \\
7 & \text{ is } 4+3 \\
4 & \Rightarrow 4 \\
4+3 & \Rightarrow 7 \\
\text{let } x = 4 \text{ in } x+3 & \Rightarrow 7 \\
\end{align*}
\]

\textbf{Goal}: show that
\[
\text{let } x = 4 \text{ in } x+3 \Rightarrow 7
\]
Quiz 1

What is derivation of the following judgment?

\[ 2 + (3 + 8) \Rightarrow 13 \]

(a)

\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(b)

\[
\begin{align*}
3 & \Rightarrow 3 \\
8 & \Rightarrow 8 \\
\hline
3 + 8 & \Rightarrow 11 \\
2 & \Rightarrow 2 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(c)

\[
\begin{align*}
8 & \Rightarrow 8 \\
3 & \Rightarrow 3 \\
11 & \text{is } 3+8 \\
\hline
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
13 & \text{is } 2+11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]
Quiz 1

What is derivation of the following judgment?

\[ 2 + (3 + 8) \Rightarrow 13 \]

(a)
\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(b)
\[
\begin{align*}
3 & \Rightarrow 3 \\
8 & \Rightarrow 8 \\
\hline
3 + 8 & \Rightarrow 11 \\
2 & \Rightarrow 2 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(c)
\[
\begin{align*}
8 & \Rightarrow 8 \\
3 & \Rightarrow 3 \\
11 & \text{is } 3+8 \\
\hline
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
13 & \text{is } 2+11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]
Definitional Interpreter

- The style of rules lends itself directly to the implementation of an interpreter as a recursive function

```ml
let rec eval (e:exp):value =
 match e with
 | Ident x -> (* no rule *) failwith "no value"
 | Num n -> n
 | Plus (e1,e2) ->
 let n1 = eval e1 in
 let n2 = eval e2 in
 let n3 = n1+n2 in
 n3
 | Let (x,e1,e2) ->
 let v1 = eval e1 in
 let e2' = subst v1 x e2 in
 let v2 = eval e2' in
 v2
```

Trace of evaluation of `eval` function corresponds to a derivation by the rules:

1. $n_1 \Rightarrow n_1$
2. $n_2 \Rightarrow n_2$
3. $n_3$ is $n_1+n_2$
4. $e_1 + e_2 \Rightarrow n_3$
5. $e_1 \Rightarrow v_1$
6. $e_2\{v_1/x\} \Rightarrow v_2$
7. Let $x = e_1$ in $e_2 \Rightarrow v_2$
Derivations = Interpreter Call Trees

\[
\begin{align*}
4 \Rightarrow 4 & \quad 3 \Rightarrow 3 & \quad 7 \text{ is } 4+3 \\
4 \Rightarrow 4 & \quad 4+3 \Rightarrow 7 \\
\text{let } x = 4 \text{ in } x+3 \Rightarrow 7
\end{align*}
\]

Has the same shape as the recursive call tree of the interpreter:

\[
\begin{align*}
eval \text{ Num } 4 \Rightarrow 4 & \quad \eval \text{ Num } 3 \Rightarrow 3 & \quad 7 \text{ is } 4+3 \\
\eval \text{ (subst } 4 \text{ “x”) } \\
\eval \text{ Num } 4 \Rightarrow 4 & \quad \text{Plus(Ident(“x”),Num 3)) } \Rightarrow 7 \\
\eval \text{ Let(“x”,Num 4,Plus(Ident(“x”),Num 3)) } \Rightarrow 7
\end{align*}
\]
Semantics Defines Program Meaning

- \( e \Rightarrow v \) holds if and only if a *proof* can be built
  - Proofs are derivations: axioms at the top, then rules whose hypotheses have been proved to the bottom
  - No proof means \( e \not\Rightarrow v \)
- Proofs can be constructed bottom-up
  - In a goal-directed fashion
- Thus, function \( \text{eval } e = \{ v \mid e \Rightarrow v \} \)
  - Determinism of semantics implies at most one element for any \( e \)
- So: Expression \( e \) *means* \( v \)
Environment-style Semantics

- The previous semantics uses substitution to handle variables
  - As we evaluate, we replace all occurrences of a variable $x$ with values it is bound to

- An alternative semantics, closer to a real implementation, is to use an environment
  - As we evaluate, we maintain an explicit map from variables to values, and look up variables as we see them
Environments

- Mathematically, an environment is a partial function from identifiers to values
  - If $A$ is an environment, and $x$ is an identifier, then $A(x)$ can either be …
  - … a value (intuition: the variable has been declared)
  - … or undefined (intuition: variable has not been declared)

- An environment can also be thought of as a table
  - If $A$ is
    
Id	Val
$x$	0
$y$	2

  - then $A(x)$ is 0, $A(y)$ is 2, and $A(z)$ is undefined
Notation, Operations on Environments

- is the empty environment (undefined for all ids)
- If $A$ is an environment then $A, x:v$ is one that extends $A$ with a mapping from $x$ to $v$
  - Sometimes just write $x:v$ instead of $\cdot, x:v$ for brevity
  - *NB.* if $A$ maps $x$ to some $v'$, then that mapping is shadowed by the mapping $x:v$
- Lookup $A(x)$ is defined as follows
  - $A(x) = \text{undefined}$
  - $A, y:v)(x) = \begin{cases} v & \text{if } x = y \\ A(x) & \text{if } x <> y \text{ and } A(x) \text{ defined} \\ \text{undefined} & \text{otherwise} \end{cases}$
An environment is just a list of mappings, which are just pairs of variable to value - called an association list.
Semantics with Environments

- The environment semantics changes the judgment
  \[ e \Rightarrow v \]
  to be
  \[ A; e \Rightarrow v \]
  where \( A \) is an environment
  - Idea: \( A \) is used to give values to the identifiers in \( e \)
  - \( A \) can be thought of as containing declarations made up to \( e \)

- Previous rules can be modified by
  - Inserting \( A \) everywhere in the judgments
  - Adding a rule to look up variables \( x \) in \( A \)
  - Modifying the rule for \texttt{let} to add \( x \) to \( A \)
Environment-style Rules

Look up variable $x$ in environment $A$

\[ A(x) = \nu \]
\[ A; x \Rightarrow \nu \]

Extend environment $A$ with mapping from $x$ to $\nu$

\[ A; e1 \Rightarrow \nu1 \quad A, x: \nu1; e2 \Rightarrow \nu2 \]
\[ A; \text{let } x = e1 \text{ in } e2 \Rightarrow \nu2 \]

\[ A; e1 \Rightarrow n1 \quad A; e2 \Rightarrow n2 \quad n3 \text{ is } n1+n2 \]
\[ A; e1 + e2 \Rightarrow n3 \]
let rec eval env e =
    match e with
    | Ident x -> lookup env x
    | Num n -> n
    | Plus (e1,e2) ->
        let n1 = eval env e1 in
        let n2 = eval env e2 in
        let n3 = n1+n2 in
        n3
    | Let (x,e1,e2) ->
        let v1 = eval env e1 in
        let env' = extend env x v1 in
        let v2 = eval env' e2 in v2
Quiz 2

What is a derivation of the following judgment?

•; let x=3 in x+2 ⇒ 5

(a)  
\[
\begin{array}{c}
x ⇒ 3 \\
2 ⇒ 2 \\
5 \text{ is } 3+2 \\
\hline
3 ⇒ 3 \\
x+2 ⇒ 5 \\
\hline
\end{array}
\]

(b)  
\[
\begin{array}{c}
x:3; x ⇒ 3 \\
x:3; 2 ⇒ 2 \\
5 \text{ is } 3+2 \\
\hline
; 3 ⇒ 3 \\
x:3; x+2 ⇒ 5 \\
\hline
\end{array}
\]

(c)  
\[
\begin{array}{c}
x:2; x⇒3 \\
x:2; 2⇒2 \\
5 \text{ is } 3+2 \\
\hline
; ; \text{ let } x=3 \text{ in } x+2 ⇒ 5 \\
\end{array}
\]
Quiz 2

What is a derivation of the following judgment?

•; let x=3 in x+2 ⇒ 5

(a)  
\[
\begin{align*}
  x & \Rightarrow 3  \\
  2 & \Rightarrow 2  \\
  5 & \text{is} \ 3+2
\end{align*}
\]

3 ⇒ 3  
\[
\begin{align*}
  x+2 & \Rightarrow 5
\end{align*}
\]

\[
\begin{align*}
  \text{let } x=3 \ \text{in } x+2 & \Rightarrow 5
\end{align*}
\]

(b)  
\[
\begin{align*}
  x:3; \ x & \Rightarrow 3  \\
  x:3; \ 2 & \Rightarrow 2  \\
  5 & \text{is} \ 3+2
\end{align*}
\]

•; 3 ⇒ 3  
\[
\begin{align*}
  x:3; \ x+2 & \Rightarrow 5
\end{align*}
\]

•; let x=3 in x+2 ⇒ 5

(c)  
\[
\begin{align*}
  x:2; \ x & \Rightarrow 3  \\
  x:2; \ 2 & \Rightarrow 2  \\
  5 & \text{is} \ 3+2
\end{align*}
\]

\[
\begin{align*}
  \text{let } x=3 \ \text{in } x+2 & \Rightarrow 5
\end{align*}
\]
Adding Conditionals to Micro-OCaml

\[ e ::= x \mid v \mid e + e \mid \text{let } x = e \text{ in } e \]
\[ \text{eq0 } e \mid \text{if } e \text{ then } e \text{ else } e \]

\[ v ::= n \mid \text{true} \mid \text{false} \]

- In terms of interpreter definitions:

\[ \text{type } \text{exp} = \]
\[ | \text{Val of } \text{value} \]
\[ | \ldots \text{ (* as before *)} \]
\[ | \text{Eq0 of } \text{exp} \]
\[ | \text{If of } \text{exp} \]

\[ \text{type } \text{value} = \]
\[ | \text{Int of } \text{int} \]
\[ | \text{Bool of } \text{bool} \]
Rules for Eq0 and Booleans

- Booleans evaluate to themselves
  - A; false ⇒ false

- eq0 tests for 0
  - A; eq0 0 ⇒ true
  - A; eq0 3+4 ⇒ false
Rules for Conditionals

- \( A; \text{e1} \Rightarrow \text{true} \quad A; \text{e2} \Rightarrow v \)
- \( A; \text{if e1 then e2 else e3} \Rightarrow v \)
- \( A; \text{e1} \Rightarrow \text{false} \quad A; \text{e3} \Rightarrow v \)
- \( A; \text{if e1 then e2 else e3} \Rightarrow v \)

- Notice that only one branch is evaluated
  - \( A; \text{if eq0 0 then 3 else 4} \Rightarrow 3 \)
  - \( A; \text{if eq0 1 then 3 else 4} \Rightarrow 4 \)
Quiz 3

What is the derivation of the following judgment?

\[ \text{•; if eq0 } 3-2 \text{ then 5 else 10 } \Rightarrow 10 \]

(a)
\[ \text{•; } 3 \Rightarrow 3 \quad \text{•; } 2 \Rightarrow 2 \quad 3-2 \text{ is 1} \]
\[ \text{•; eq0 } 3-2 \Rightarrow \text{false} \quad \text{•; } 10 \Rightarrow 10 \]
\[ \text{•; if eq0 } 3-2 \text{ then 5 else 10 } \Rightarrow 10 \]

(b)
\[ 3 \Rightarrow 3 \quad 2 \Rightarrow 2 \]
\[ 3-2 \text{ is 1} \]
\[ \text{eq0 } 3-2 \Rightarrow \text{false} \quad 10 \Rightarrow 10 \]
\[ \text{if eq0 } 3-2 \text{ then 5 else 10 } \Rightarrow 10 \]

(c)
\[ \text{•; } 3 \Rightarrow 3 \]
\[ \text{•; } 2 \Rightarrow 2 \]
\[ 3-2 \text{ is 1} \]
\[ \text{•; eq0 } 3-2 \Rightarrow \text{false} \quad \text{•; } 10 \Rightarrow 10 \]
\[ \text{•; if eq0 } 3-2 \text{ then 5 else 10 } \Rightarrow 10 \]

3-2 \Rightarrow 1 \quad 1 \neq 0
Quiz 3

What is the derivation of the following judgment?

•; if eq0 3-2 then 5 else 10 ⇒ 10

(a)

•; 3 ⇒ 3  •; 2 ⇒ 2  3-2 is 1
------------------------
•; eq0 3-2 ⇒ false  •; 10 ⇒ 10
------------------------
•; if eq0 3-2 then 5 else 10 ⇒ 10

(b)

3 ⇒ 3  2 ⇒ 2
3-2 is 1
-------------
eq0 3-2 ⇒ false  10 ⇒ 10
-------------
if eq0 3-2 then 5 else 10 ⇒ 10

(c)

•; 3 ⇒ 3
•; 2 ⇒ 2
3-2 is 1
-------------
•; 3-2 ⇒ 1  1 ≠ 0
-------------
•; eq0 3-2 ⇒ false  •; 10 ⇒ 10
-------------
•; if eq0 3-2 then 5 else 10 ⇒ 10
let rec eval env e =
  match e with
  | Ident x -> lookup env x
  | Val v -> v
  | Plus (e1,e2) ->
    let Int n1 = eval env e1 in
    let Int n2 = eval env e2 in
    let n3 = n1+n2 in
    Int n3
  | Let (x,e1,e2) ->
    let Int n1 = eval env e1 in
    let Int n2 = eval env e2 in
    let n3 = n1+n2 in
    Int n3
  | Eq0 e1 ->
    let Int n = eval env e1 in
    if n=0 then Bool true else Bool false
  | If (e1,e2,e3) ->
    let Bool b = eval env e1 in
    if b then eval env e2
    else eval env e3

Basically both rules for eq0 in this one snippet

Both if rules here
Quick Look: Type Checking

- Inference rules can also be used to specify a program’s **static semantics**
  - I.e., the rules for type checking
- We won’t cover this in depth in this course, but here is a flavor.

- **Types** $t ::= \text{bool} \mid \text{int}$
- **Judgment** $\vdash e : t$ says $e$ has type $t$
  - We define inference rules for this judgment, just as with the operational semantics
Some Type Checking Rules

- Boolean constants have type \texttt{bool}
  \[ \vdash \text{true} : \text{bool} \quad \vdash \text{false} : \text{bool} \]

- Equality checking has type \texttt{bool} too
  - Assuming its target expression has type \texttt{int}
    \[ \vdash e : \text{int} \]
    \[ \vdash \text{eq0} \ e : \text{bool} \]

- Conditionals
  \[ \vdash e1 : \text{bool} \quad \vdash e2 : t \quad \vdash e3 : t \]
  \[ \vdash \text{if} \ e1 \ \text{then} \ e2 \ \text{else} \ e3 : t \]
Handling Binding

What about the types of variables?

- Taking inspiration from the environment-style operational semantics, what could you do?

Change judgment to be $\Gamma \vdash e : t$ which says $e$ has type $t$ under type environment $\Gamma$

- $\Gamma$ is a map from variables $x$ to types $t$
  - Analogous to map $A$, but maps vars to types, not values

What would be the rules for $\texttt{let}$, and variables?
Type Checking with Binding

- Variable lookup
  \[ \frac{G(x) = t}{\forall x : t} \]

- Let binding
  \[ \frac{G \vdash e_1 : t_1 \quad G, x : t_1 \vdash e_2 : t_2}{G \vdash \text{let } x = e_1 \text{ in } e_2 : t_2} \]

  analogous to
  \[ \frac{A(x) = v}{A; x \Rightarrow v} \]

  analogous to
  \[ \frac{A; e_1 \Rightarrow v_1 \quad A, x : v_1; e_2 \Rightarrow v_2}{A; \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2} \]
Scaling up

- Operational semantics (and similarly styled typing rules) can handle full languages
  - With records, recursive variant types, objects, first-class functions, and more

- Provides a concise notation for explaining what a language does. Clearly shows:
  - Evaluation order
  - Call-by-value vs. call-by-name
  - Static scoping vs. dynamic scoping
  - ... We may look at more of these later