CMSC 330: Organization of
Programming Languages

Memory Management and
Garbage Collection

CMSC330 Spring 2019 1

Memory Attributes

» Memory to store data in programming
languages has the following lifecycle

* Allocation
» When the memory is allocated to the program
* Lifetime
» How long allocated memory is used by the program
* Recovery
» When the system recovers the memory for reuse
» The allocator is the system feature that
performs allocation and recovery

Memory Attributes (cont.)

» Most programming languages are concerned
with the following memory classes
1. Static (or fixed) memory
2. Stack/LIFO memory
3. Dynamically allocated memory

Memory Classes

» Static memory — Usually at a fixed address
 Lifetime — The execution of program
* Allocation — For entire execution

* Allocator — Compiler
* Recovery — By system when program terminates

» Stack (LIFO) memory

 Lifetime — Activation of method using that data

* Allocation — When method is invoked
* Allocator — Typically compiler, sometimes programmer

* Recovery — When method terminates

Memory Classes (cont.)

» Dynamic memory — Addresses allocated on
demand in an area called the heap
* Lifetime — As long as memory is needed
* Allocation — Explicitly by programmer, or implicitly by
compiler
* Allocator — Manages free/available space in heap

* Recovery — Either manually (e.g., via £ree) or
automatically (e.g., via garbage collection)

Manual vs. Automatic Recovery

» Manual memory management is
* Efficient — requires less storage overall

* Error prone — programmers can easily make
mistakes, leading to leaks and use-after-free errors,
which have security ramifications

» Automatic memory management is

* Less efficient — in space usage and latency — than
manual management

* Easy to use, more compositional — no worries about
when an object is truly dead
» Avoids security problems

Memory Management in C

» Local variables live on the stack
* Allocated at function invocation time
e Deallocated when function returns
* Storage space reused after function returns

» Space on the heap allocated with malloc()
* Must be explicitly freed with free()

* Called explicit or manual memory management
» Deletions must be done by the user

Memory Management in Ruby, Java

» Local variables live on the stack
e Storage reclaimed when method returns

» Objects live on the heap
 Created with calls to Class.new

* Objects never explicitly freed: automatic memory
management (garbage collection)

Memory Management in OCami

» Local variables live on the stack

» Tuples, closures, and constructed types live on
the heap

let x = (3, 4) (" heap-allocated *)
let £f x y=x+y in £ 3

(* result heap-allocated *)
type ‘a t = None | Some of ‘a
None (* not on the heap—just a primitive *)
Some 37 (* heap-allocated *)

* Data reclaimed vi garbage collection automatically

Automatic memory management

» Primary goal: automatically reclaim dynamic memory

* Secondary goal: avoid fragmentation

HEAP BEFORE

HEAP AFTER

d

. - free space

» Insight: You can do reclamation and avoid fragmentation
(next slide) if you can identify every pointer in a program

* You can move the allocated storage, then redirect pointers to it

» Compact it, to avoid fragmentation

 Compiler ensures perfect knowledge LISP, OCAML, Java, Prolog
but not in C, C++, Pascal, Ada

12

Fragmentation

» Another memory management problem

» Example sequence of calls
allocate(a);

allocate(x);

allocate(y); e

free(a); X
allocate(z); 4 d

size
of b

free(y);
allocate(b);
= Not enough contiguous space for b

13

Strategy

» At any point during execution, can divide the
objects in the heap into two classes
* Live objects will be used later

* Dead objects will never be used again
> They are “garbage”

» Thus we need garbage collection (GC)
algorithms that can

1.Distinguish live from dead objects
2.Reclaim the dead objects and retain the live ones

14

Determining Liveness

» In most languages we can’t know for sure which
objects are really live or dead

* Undecidable, like solving the halting problem

» Thus we need to make a safe approximation
* OK if we decide something is live when it's not

* But we'd better not deallocate an object that will be
used later on

15

Liveness by Reachabillity

» An object is reachable if it can be accessed by
dereferencing (“chasing”) pointers from live data

» Safe policy: delete unreachable objects
* An unreachable object can never be accessed again
by the program
» The object is definitely garbage
* A reachable object may be accessed in the future

» The object could be garbage but will be retained anyway
» Could lead to memory leaks

16

Roots

» At a given program point, we define liveness as
being data reachable from the root set

* Global variables
» What are these in Java? Ruby? OCaml?

* |Local variables of all live method activations
> |.e., the stack

» At the machine level

* Also consider the register set
» Usually stores local or global variables

» Next
* Techniques for determining reachability

17

Reference Counting

» ldea: Each object has count of number of
pointers to it from the roots or other objects

* When count reaches 0, object is unreachable
» Count tracking code may be manual or automatic

» In regular use

* C++ and Rust (smart pointers), Cocoa (manual),
Python (automatic)

» Method doesn’t address fragmentation problem
» Invented by Collins in 1960

* A method for overlapping and erasure of lists.

Communications of the ACM, December 1960
18

Reference Counting Example

stack

A2
S

19

Reference Counting Example (cont.)

stack

X2

=

N |

Reference Counting Example (cont.)

stack

X2

=

N |

Reference Counting Example (cont.)

stack
r A0

N |

X2

Reference Counting Example (cont.)

stack

X2

=

N |

Reference Counting Example (cont.)

stack

X240

=

N |

Reference Counting Example (cont.)

stack

=

N |

25

Rust Rc Example

use std::rc::Rc;

fn main() {
let s = String::from("hello");
let rl = Rc::new(&s);

{
let r2 = Rc::clone(&rl) ;

println! ("rl = {}",Rc::strong count(&rl));

println! ("r2 = {}",Rc::strong count (&r2));
}

// r2 is out of scope

println! ("rl = {}",Rc::strong count (&rl));
}
r1=2
Output: 2 =2

ri1 =1

26

Reference Counting Tradeoffs

» Advantage

* Incremental technique

» Generally small, constant amount of work per memory write
» With more effort, can even bound running time

» Disadvantages
* Cascading decrements can be expensive
* Requires extra storage for reference counts
* Need other means to collect cycles, for which counts

nevergoto 0 [—— o -
L
i 1] £l

1
If this link is deleted, all reference counts are = 1, but no way to
access ring structure.,

27

Tracing Garbage Collection

» ldea: Determine reachability as needed, rather
than by stored counts, incrementally
» Every so often, stop the world and

* Follow pointers from live objects (starting at roots) to
expand the live object set

» Repeat until no more reachable objects
* Deallocate any non-reachable objects

» Two main variants of tracing GC

* Mark/sweep (McCarthy 1960) and stop-and-copy
(Cheney 1970)

28

Mark and Sweep GC

» TWoO phases

* Mark phase: trace the heap and mark all reachable
objects

* Sweep phase: go through the entire heap and
reclaim all unmarked objects

29

Mark and Sweep Example

stack
—_ e

30

Mark and Sweep Example (cont.)

stack

31

Mark and Sweep Example (cont.)

stack

32

Mark and Sweep Example (cont.)

stack

33

Mark and Sweep Example (cont.)

stack

" T3 \

Mark and Sweep Example (cont.)

stack

" T3 \

Mark and Sweep Example (cont.)

stack

)

Mark and Sweep Example 2

0A 0B | C D |0E [0 F
root "’I IO | —_—

free

38

Mark and Sweep Example 2

/_\.
oot —0 A 0B Joc pbD JoE fo F
N " R
free
After Mark
/‘—\.
oot — L A 0B [¢ oD [E [0 F
S——— T —

free

39

Mark and Sweep Example 2

After Mark

N
oot — L A 0B [¢ pD [E p F
S— T
free
After Sweep
N
ot — A 0B pc po pE JpF

40

Mark and Sweep Advantages

» No problem with cycles

» Non-moving
* Live objects stay where they are

* Makes conservative GC possible
» Used when identification of pointer vs. non-pointer uncertain
» More later

41

Mark and Sweep Disadvantages

» Fragmentation

* Available space broken up into many small pieces

» Thus many mark-and-sweep systems may also have a
compaction phase (like defragmenting your disk)

» Cost proportional to heap size

* Sweep phase needs to traverse whole heap — it
touches dead memory to put it back on to the free list

42

Copying GC

» Like mark and sweep, but only touches live
objects

Divide heap into two equal parts (semispaces)
Only one semispace active at a time

At GC time, flip semispaces

Trace the live data starting from the roots
Copy live data into other semispace

Declare everything in current semispace dead

> W0 dhd =

Switch to other semispace

43

Copying GC Example

stack

—

Copying GC Example (cont.)

stack

@ =

\L

Copying GC Example (cont.)

__________________________ stack __________ ...

Q =1
— : |
C = :
@ i
— 2

———

O /

Copying GC Example (cont.)

__________________________ stack
@ =
3 g,
® i
i D

— 2

———

@ /

Copying GC Example 2

New space

root — A B | C D

E L f
~L

48

Copying GC Example 2

root

N —
— B |C E F new space
‘Qd_/‘ -~
alloc
root SCan
new space A C F

N—

49

Copying GC Tradeoffs

» Advantages
* Only touches live data

* No fragmentation (automatically compacts)
» Will probably increase locality

» Disadvantages
* Requires twice the memory space

50

Quiz 1

Which garbage collection implementation requires
more storage?

A.Mark and Sweep
B.Copying GC

51

Quiz 1

Which garbage collection implementation requires
more storage?

A.Mark and Sweep
B.Copying GC

52

Quiz 2

Which compacts the heap to prevent fragmentation?

aMark and Sweep
s.Reference Counting
c.Copying GC

53

Quiz 2

Which compacts the heap to prevent fragmentation?

aMark and Sweep
s.Reference Counting
c.Copying GC

54

Quiz 3

The computational cost of Copying GC is
proportional to the heap size

A True
s.False

95

Quiz 3

The computational cost of Copying GC is
proportional to the heap size

A True
sB.False

56

Quiz 4

Which of the following happens most frequently?

a.Reference Count Updating
s.Mark and Sweep checking for dead memory
c.Copying GC copying live data

57

Quiz 4

Which of the following happens most frequently?

a.Reference Count Updating
s.Mark and Sweep checking for dead memory
c.Copying GC copying live data

58

Stop the World: Potentially Long Pause

» Both of the previous algorithms “stop the world”
by prohibiting program execution during GC

* Ensures that previously processed memory is not
changed or accessed, creating inconsistency

» But the execution pause could be too long

* Bad if your car’s braking system performs GC while
you are trying to stop at a busy intersection!

» How can we reduce the pause time of GC?

* Don't collect the whole heap at once (incremental)
59

The Generational Principle

Minor collections Major collections

.B A i . L/

.v Toung
(L ; | objects
V) ¢ . . .
2 s die quickly,
@ old objects
8 k l. . ”
2 eep living
S
N
=

Byvtes allocated

Object lifetime increases =

60

Generational Collection

» Long lived objects visited multiple times

* |dea: Have more than one heap region, divide into
generations

» Older generations collected less often

» Objects that survive many collections get promoted into
older generations

» Need to track pointers from old to young generations to use
as roots for young generation collection

- Tracking one in the remembered set

» One popular setup: Generational, copying GC

61

Java HotSpot SDK 1.4.2 Collector

» Multi-generational, hybrid collector
* Young generation
» Stop and copy collector

* Tenured generation
» Mark and sweep collector

* Permanent generation
» No collection

62

Conservative Garbage Collection (for C)

» For C, we cannot be sure which elements of an
object are pointers

* Because of incomplete type information, the use of
unsafe casts, etc.

» ldea: suppose it is a pointer if it looks like one

* Most pointers are within a certain address range,
they are word aligned, etfc.

* May retain memory spuriously

» Different styles of conservative collector
* Mark-sweep: important that objects not moved

* Mostly-copying: can move objects you are sure of
63

What Does GC Mean to You?

» |deally, nothing
* GC should make programming easier
* GC should not affect performance (much)

» Usually bad idea to manage memory yourself

* Using object pools, free lists, object recycling, etc...

* GC implementations have been heavily tuned
» May be more efficient than explicit deallocation

» If GC becomes a problem, hard to solve
* You can set parameters of the GC
* You can modify your program

64

Increasing Memory Performance

» Don't allocate as much memory
* Less work for your application
* Less work for the garbage collector

» Don’t hold on to references
* Null out pointers in data structures

 Example
Object a = new Object;
...use a...
a = null; // when a is no longer needed

65

Find the Memory Leak

class Stack {

private Object[] stack;

private int index;

public Stack(int size) {
stack = new Object[size];

}

public void push (Object o) {
stack[index++] = o;

}

public void pop()

return stack[index--];

}
}

From Haggar, Garbage Collection and the Java Platform Memory Model

66

Find the Memory Leak

class Stack {
private Object[] stack;
private int index;
public Stack(int size) {
stack = new Object[size];

}

public void push (Object o) {
stack[index++] = o;

}

public void pop()
stack[index] = null; // null out ptr
return stack[index--];

}
}

From Haggar, Garbage Collection and the Java Platform Memory Model

Answer: pop() leaves item on stack array; storage not reclaimed

67

