These are examples of proofs used in $\operatorname{cmsc} 250$. These proofs tend to be very detailed. You can be a little looser.

General Comments Proofs by Mathematical Induction

- If a proof is by Weak Induction the Induction Hypothesis must reflect that. I.e., you may NOT write the Strong Induction Hypothesis.
- The Inductive Step MUST explicitly state where the Inductive Hypothesis is used. (Something like "by IH" is good.)

Example Proof by Weak Induction

Theorem. For $n \geq 1, \sum_{i=1}^{n} 4 i-2=2 n^{2}$.
BASE CASE: Let $n=1$. The summation gives

$$
\sum_{i=1}^{n} 4 i-2=\sum_{i=1}^{1} 4 i-2=4 \cdot 1-2=2 .
$$

The formula gives

$$
2 n^{2}=2 \cdot 1^{2}=2
$$

The two values are the same.

- INDUCTIVE HYPOTHESIS [Choice I: From n-1 to n]:

Assume that the theorem holds for $n-1$ (for arbitrary $n>1$). Then

$$
\sum_{i=1}^{n-1} 4 i-2=2(n-1)^{2}
$$

[It is optional to simplify the right side. If not, it will have to be done inside the Induction Step.]

- INDUCTIVE STEP: [Choice Ia: Start with the sum we care about.]

$$
\begin{aligned}
\sum_{i=1}^{n} 4 i-2 & =\sum_{i=1}^{n-1} i+(4 n-2) & & \text { by splitting sum } \\
& =2(n-1)^{2}+(4 n-2) & & \text { by IH } \\
& =2\left(n^{2}-2 n+1\right)+(4 n-2) & & \text { by algebra } \\
& =2 n^{2} . & & \text { by algebra }
\end{aligned}
$$

So the theorem holds for n.

- INDUCTIVE STEP: [Choice Ib: Start with the induction hypothesis.]

$$
\begin{aligned}
\sum_{i=1}^{n-1} 4 i-2 & =2(n-1)^{2} \\
\sum_{i=1}^{n-1} 4 i-2+(4 n-2) & =2(n-1)^{2}+(4 n-2) \\
\sum_{i=1}^{n} 4 i-2 & =2\left(n^{2}-2 n+1\right)+(4 n-2) \\
& =2 n^{2}
\end{aligned}
$$

by IH
adding $4 n-2$ to both sides
merging the sum on left side
\ldots and algebra on the right side
by algebra on the right side

So the theorem holds for n.

- INDUCTIVE HYPOTHESIS: [Choice II: From n to $n+1$]

Assume that the theorem holds for arbitrary $n \geq 1$. Then

$$
\sum_{i=1}^{n} 4 i-2=2 n^{2}
$$

[The following is optional (but often useful). If you do not do this, you will struggle to make the right side have the correct form with n replaced by $n+1$. In principle, it should be inside the Inductive Step. At the very least, it must be clearly distinct from the Inductive Hypothesis.]

NEED TO SHOW:

$$
\sum_{i=1}^{n+1} 4 i-2=2(n+1)^{2}=2\left(n^{2}+2 n+1\right)=2 n^{2}+4 n+2
$$

- INDUCTIVE STEP: [Choice IIa: Start with the sum we care about.]

$$
\begin{array}{rlrl}
\sum_{i=1}^{n+1} 4 i-2 & & =\sum_{i=1}^{n} i+(4(n+1)-2) & \\
& & \text { by splitting sum } \\
& =2 n^{2}+(4(n+1)-2) & & \text { by IH } \\
& =2 n^{2}+(4 n+2) & & \text { by algebra } \\
& =4 n+2 & & \text { by algebra }
\end{array}
$$

This is what we needed to prove, so the theorem holds for $n+1$.

- INDUCTIVE STEP: [Choice IIb: Start with the induction hypothesis.]

$$
\begin{array}{rlrl}
\sum_{i=1}^{n} 4 i-2 & =2 n^{2} & & \text { by IH } \\
\sum_{i=1}^{n} 4 i-2+(4(n+1)-2) & =2 n^{2}+(4(n+1)-2) & & \text { adding } 4(n+1)-2 \text { to both sides } \\
\sum_{i=1}^{n+1} 4 i-2 & =2 n^{2}+4 n+2 & & \text { merging sum on the left side } \\
& & \ldots \text { and algebra on the right side }
\end{array}
$$

This is what we needed to prove, so the theorem holds for $n+1$.

Example Proof by Strong Induction

BASE CASE: [Same as for Weak Induction.]

- INDUCTIVE HYPOTHESIS: [Choice I: Assume true for less than n]
(Assume that for arbitrary $n>1$, the theorem holds for all k such that $1 \leq k \leq n-1$.)
Assume that for arbitrary $n>1$, for all k such that $1 \leq k \leq n-1$ that

$$
\sum_{i=1}^{k} 4 i-2=2 k^{2}
$$

- INDUCTIVE HYPOTHESIS: [Choice II: Assume true for less than $n+1$]
(Assume that for arbitrary $n \geq 1$ the theorem holds for all k such that $1 \leq k \leq n$.)
Assume that for arbitrary $n>1$, for all k such that $1 \leq k \leq n$ that

$$
\sum_{i=1}^{k} 4 i-2=2 k^{2}
$$

INDUCTIVE STEP: [And now a brilliant proof that somehow uses strong induction.]

Constructive Induction

[We do this proof only one way, but any of the styles is fine.]
Guess that the answer is quadratic, so it has form $a n^{2}+b n+c$. We will derive the constants a, b, c while proving it by Mathematical Induction.

BASE CASE: Let $n=1$. The summation gives

$$
\sum_{i=1}^{n} 4 i-2=\sum_{i=1}^{1} 4 i-2=4 \cdot 1-2=2
$$

The formula gives

$$
a n^{2}+b n+c=a \cdot 1^{2}+b \cdot 1+c=a+b+c
$$

So, we need $a+b+c=2$.

INDUCTIVE HYPOTHESIS:

Assume that the theorem holds for $n-1$ (for arbitrary $n>1$). Then

$$
\sum_{i=1}^{n-1} 4 i-2=a(n-1)^{2}+b(n-1)+c
$$

[Again, it is optional to simplify the right side.]

INDUCTIVE STEP:

$$
\begin{aligned}
\sum_{i=1}^{n} 4 i-2 & =\sum_{i=1}^{n-1} 4 i-2+(4 n-2) & & \text { by splitting sum } \\
& =a(n-1)^{2}+b(n-1)+c+(4 n-2) & & \text { by IH } \\
& =a\left(n^{2}-2 n+1\right)+b(n-1)+c+(4 n-2) & & \text { by algebra } \\
& =a n^{2}+(-2 a+b+4) n+a-b+c-2 & & \text { by algebra } \\
& =a n^{2}+b n+c & & \text { to make the induction work }
\end{aligned}
$$

The coefficients on each of the powers have to match. This leads to the three simultaneous equations:

$$
\begin{aligned}
& b=-2 a+b+4 \\
& c=a-b+c-2 \\
& 2=a+b+c \quad \text { from the base case }
\end{aligned}
$$

The first equation gives $a=2$, then the second gives $b=0$, and finally the third gives $c=0$.

Constructive Induction (Another Example)

Problem: Find an upper bound on F_{n} in the recurrence

$$
F_{n}=F_{n-1}+F_{n-2}
$$

where $F_{0}=F_{1}=1$.
Guess that the answer is exponential, so $F_{n} \leq a b^{n}$. We will derive the constants a, b while proving it by Mathematical Induction.

BASE CASES: Let $n=0$. By definition

$$
F_{n}=F_{0}=1
$$

The formula gives

$$
F_{n} \leq a b^{n}=a b^{0}=a
$$

So, $a \geq 1$.
Let $n=1$. By definition

$$
F_{n}=F_{1}=1
$$

The formula gives

$$
F_{n} \leq a b^{n}=a b^{1}=a b
$$

So, $a b \geq 1$.

INDUCTIVE HYPOTHESIS:

Assume that for arbitrary $n>1$, for all k such that $1 \leq k \leq n-1$ that $F_{k} \leq a b^{k}$.

INDUCTIVE STEP:

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} & & \text { by definition } \\
& \leq a b^{n-1}+a b^{n-2} & & \text { by IH } \\
& \leq a b^{n} . & & \text { to make the induction work }
\end{aligned}
$$

Thus we need to solve

$$
a b^{n-1}+a b^{n-2} \leq a b^{n}
$$

or

$$
b^{2}-b-1 \geq 0
$$

By the quadratic formuls, we get

$$
b \geq \frac{-(-1) \pm \sqrt{(-1)^{2}-4 \cdot 1 \cdot 1}}{2 \cdot 1}=\frac{1 \pm \sqrt{5}}{2}
$$

Only the positive value can hold. Also, we would like the smallest possible value for b. So we choose

$$
b=\frac{1+\sqrt{5}}{2}
$$

From the base cases we get $a \geq 1$ (since the other condition is weaker), and now we would like the smallest possible value for a. So we choose $a=1$. This gives

$$
F_{n} \leq\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

Catalan Numbers

Theorem. For $n \geq 1, \frac{(2 n)!}{n!(n+1)!} \geq \frac{4^{n}}{(n+1)^{2}}$.
Proof. by Mathematical Induction.
BASE CASE: Easy.
INDUCTION HYPOTHESIS: Assume true for $n-1$:

$$
\frac{(2(n-1))!}{(n-1)!n!} \geq \frac{4^{n-1}}{n^{2}}
$$

INDUCTION STEP: Alternative I

$$
\begin{aligned}
\frac{(2 n)!}{n!(n+1)!} & =\frac{(2 n)(2 n-1)}{(n-1) n} \frac{(2(n-1))!}{(n-1)!n!} \\
& \geq \frac{(2 n)(2 n-1)}{n(n+1)} \frac{4^{n-1}}{n^{2}} \quad \text { by IH } \\
& =\frac{(2 n)(2 n-1)}{n(n+1)} \frac{(n+1)^{2}}{4 n^{2}} \frac{4 n^{2}}{(n+1)^{2}} \frac{4^{n-1}}{n^{2}} \\
& =\frac{(2 n)(2 n-1)}{(n-1) n} \frac{(n+1)^{2}}{4 n^{2}} \frac{4^{n}}{(n+1)^{2}} \\
& =\frac{(1-1 / 2 n)(1+1 / n)}{1-1 / n} \frac{4^{n}}{(n+1)^{2}} \\
& =\frac{1+1 /(2 n)-1 /\left(2 n^{2}\right)}{1-1 / n} \frac{4^{n}}{(n+1)^{2}} \\
& \geq \frac{4^{n}}{(n+1)^{2}} .
\end{aligned}
$$

INDUCTION STEP: Alternative $I I$

$$
\begin{aligned}
\frac{4^{n}}{(n+1)^{2}} & =\frac{4 n^{2}}{(n+1)^{2}} \frac{4^{n-1}}{n^{2}} \\
& \leq \frac{4 n^{2}}{(n+1)^{2}} \frac{(2(n-1))!}{(n-1)!n!} \quad \text { by IH } \\
& =\frac{4 n^{2}}{(n+1)^{2}} \frac{n(n+1)}{(2 n)(2 n-1)} \frac{(2 n)(2 n-1)}{n(n+1)} \frac{(2 n-1))!}{(n-1)!n!} \\
& =\frac{1}{(1+1 / n)(1-1 /(2 n))} \frac{(2 n)!}{n!(n+1)!} \\
& =\frac{1}{\left(1+1 /(2 n)-1 /\left(2 n^{2}\right)\right)} \frac{(2 n)!}{n!(n+1)!} \\
& \leq \frac{(2 n)!}{n!(n+1)!} .
\end{aligned}
$$

