MATH299M/CMSC389W
Spring 2019 - Ajeet Gary, Devan Tamot, Vlad Dobrin
Model H4: Calculate Terms of Taylor Expansion
Assigned: February 18 ${ }^{\text {th }}, 2019$
Due: March $4^{\text {th }}, 2019$ 11:59PM

This week's assignment will be short and straightforward, since it's a part of Project 1. The objective is to create a model that calculates the Nth term of the Taylor Expansion of a function. There's a Mathematica function that will do this for you, but I want you to make it yourself; it's an instructive application of the computation tools from Lesson 4.

The $\mathrm{N}^{\text {th }}$ term in the Taylor Expansion of a function together with the preceding N terms (the "first" term is the $0^{\text {th }}$ term when $\mathrm{N}=0$) makes the $\mathrm{N}^{\text {th }}$ order Taylor Approximation of a function. This is the $\mathrm{N}^{\text {th }}$ order polynomial that fits the function best. The full infinite sum is called a Taylor Series. Taylor Approximations are done around a center, denoted a, which is the point the approximation is around. When $\mathrm{a}=0$ we call this a Maclaurin Series. This is what the $\mathrm{n}^{\text {th }}$ term of the Taylor expansion centered at a of a function $f(x)$ is:

$$
f^{(n)}(a) \frac{(x-a)^{n}}{n!}
$$

Note that $f^{(n)}(a)$ is notation for $\frac{d^{n} f(a)}{d x^{n}}$.
Note that for $\frac{d^{n} f(a)}{d x^{n}}$ you take the $\mathrm{n}^{\text {th }}$ derivative of f wrt x first, then substitute $\mathrm{x}=\mathrm{a}$.
If you want a more thorough write-up of how the Taylor Expansion works, check out the Project 1 description!

