MATH299M/CMSC389W
Visualization through Mathematica
Spring 20191 Credit STICs course

Administrative

Instructors:

Office Hours:
Course supervisor: Dr. William Goldman

agary@terpmail.umd.edu
tamotd@gmail.com
vlad.a.dobrin@gmail.com
MATH3115
wmg@math.umd.edu

Course Website

http://www.cs.umd.edu/class/spring2019/cmsc389w/
This course will also use an ELMS page

Overview

This course is designed to teach how to use the most common and useful features of Wolfram Mathematica, an extremely powerful technical computing system that can be used to model a wide range of problems. Students will also learn important techniques and styles that will equip them with a profound mastery of Mathematica. Plotting functions in several ways, making models that can be manipulated in real time by the user, and efficiently computing solutions to complicated equations are among the things we'll cover. We'll use these skills to model various structures in math, computer science and physics, and for the final project every student will pick something relevant to their major (or interest otherwise) to model, whether that be in physics, math, engineering, economics, or anything else mathematical in nature. Over the course of learning these tools students will encounter profound examples of what Mathematica can do, seeing first-hand that creating models that can be manipulated in real time helps greatly in understanding the underlying symmetries and properties of a problem.

Class Time

Fridays 4-4:50pm in EGR 1104

Course Materials

The text for this course will be a series Mathematica notebooks that will be released weekly, they will be interactive files that define the tools we will be learning that week.
Mathematica has excellent online documentation: http://reference.wolfram.com/language/ As a UMD student you have a free subscription to Wolfram Mathematica that you can download from TERPware: https://terpware.umd.edu/Windows/title/1837

Grading
Weekly Models 40\%
Project 1 10\%
Project 2 10\%
Final Project 35\%
Attendance 5\%
... < $80<=\mathrm{B}-<83<=\mathrm{B}<87<=\mathrm{B}+<90<=\mathrm{A}-<93<=\mathrm{A}<97<=\mathrm{A}+$

Weekly Models

The Weekly Models will be assigned on Mondays and due two weeks later, again on Monday, at $11: 59 \mathrm{pm}$, with a late deadline of Tuesday at $11: 59 \mathrm{pm}$. All assignments will be submitted as a .nb file through ELMS. Students are required to complete a total of 10 of these assignments according to the breakdown below:

5/6 assignments from Weeks 1-6 - Introduction (C1, C2, C3, C4, C5, C6)
3/6 assignments from Weeks 7-9 - Plotting (C7.1, C7.2, C8.1, C8.2, C9.1, C9.2)
$2 / 6$ assignments from Weeks 10-15 - Advanced Topics (C10, C11, C12, C13, C14, C15)
If you complete more assignments from a section than necessary, your grade will be computed by taking the best scores of those assignments, and the extra scores can replace scores from the previous section if they are higher.
The rubric for the Weekly Models is as follows:
50\% - Properly uses the Mathematica tools taught that week
30\% - Model is instructive and insightful into the mathematics being modeled
10\% - Style, code tidiness, organization, explanation
10\% - Awesomeness - "Wow factor"
The best 3 submissions for each assignment will earn 105%, 107\%, and 110% - a little competition each week ©
The assignment prompts will in general be somewhat open-ended. I will ask to see something visualized, and it will be up to you what it exactly looks like and how it is implemented!

Projects

The two projects will be given after the first and second months of class, and for each you will have until the next project is assigned to complete them. Since students will be coming from different backgrounds, for Project 2 there are three options, Project 2a, 2b, and 2c, in the fields of vector calculus, linear algebra, and harmonic analysis, respectively, of which only one needs to be completed. If you have not taken or are enrolled in any 200 level math course, we will assign you an alternate project at the Calculus II level.

Final Project

The last month students will be working on their Final Project. Each student will have their own topic of choice (l'll help you pick something that will be cool to model and relevant to your interests!). During our final exam slot (time to be determined) instead of taking a final exam, we will be doing short presentations of everyone's final projects!

Attendance

Lectures are the lifeblood of Visualization Through Mathematica - your attendance is important for your own enrichment as well as because your participation will make the course richer for everyone else as well :) If you must miss class for some reason send us an email ahead of time and we'll pardon your absence.

Collaboration

Students are allowed to work together on all assignments except the Final Project. Each student must submit unique code for each assignment. If you copy other students' code all semester then on the Final Project, which will be unique for each student, you'll have a hard time. At the bottom of each assignment you should list the names of the students you collaborated with.

Schedule (Subject to change)

Week 1: 1/28-2/3	Introduction and Basics: Variables, Lists, Functions, Manipulate Model C1: Investigating Infinite Sums Model H1: Asymptotic Complexity Exposition
Week 2: 2/4-2/10	Basics II: Defining Functions, Implicit Functions, Table, Map Model C2: Converting Between Rectangular and Polar Coordinates Model H2: Convergence of Fibonacci Sequence Ratio
Week 3: 2/11-2/17	Plotting I: Plot, Options, and Manipulate controls Model C3: Manipulating Coefficients of Polynomials Model H3: Constructive/Destructive Interference with Sine Waves
Week 4: 2/18-2/24	Computation: Solve, Limit, Derivative, Integral, Simplify, Expand, Numeric Model C4: Graphing first N Derivatives of a Function Model H4: Newton-Raphson Method Project 1: Visualizing Taylor Approximations
Week 5: 2/25-3/3	CS-Style Scripting: Conditionals, Loops, Block, Module Model C5: Merge Sort Model H5: Gaussian Row Reduction
Week 6: 3/4-3/10	Graphics: Graphics, Points, Lines, Shapes, Show, GraphicsGrid, Graphics3D Model C6: Geometric Circle Area Proof Model H6: Visual Proof of the Baudhayana Theorem
Week 7: 3/11-3/17	Plotting II: RegionPlot, ContourPlot, DensityPlot Model C7: Radius of Convergence of the Complex Geometric Series Model H7.1: Integral of a Function as Area under a Curve Model H7.2: Gravitational Field populated with several bodies
Week 8: 3/18-3/24	Plotting III: PolarPlot, ParametricPlot Model C8.1: Visual Proof of the Pythagorean Identity Sin²+Cos
So1	
Model C8.2: Visualizing Homotopic Equivalence	
Spring Break	

	Model H12: Create Bases Package Choosing Final Projects!
Week 13: 4/22-4/28	Advanced Dynamic: Proper use of Dynamic and Dynamic Module Model C13.1: Modeling Particles in a Box Model C13.2: Pong Model H13: Writing Manipulate in Dynamic
Week 14: 4/29-5/5	Precomputing: The Art of Pre-Computation Model H14: Precomputation Update to Past Assignment
Week 15: 5/6-5/13 Last Class of Semester	Evaluation Control: Evaluate, Hold, Tuning and Debugging Model C15: Evaluation Control in Model with Change of Variables Model H15: Stable Algorithm for Solving Linear Systems
Final Exam Week	Showing off the Power of Mathematica through Examples: Fractals, Relativistic Beaming, Barn-Ladder Paradox, Möbius Transformations, Dynamical Systems, Chaos, Hyperbolic Geometry, Interpolation Techniques, Geometric Constructions, and more

In Black is the topic of the week (the tools we'll be learning)
In Green are the in-class example(s) that we'll look at
In Blue is the homework assigned that day which will be due the next week
In Pink are when the Projects are assigned
Final Project ideas:

- Visualizing Homotopic Equivalence
- Constructions from Euclid's Elements
- 3D Electron Orbits using the Wave Function
- Create a Complex Variables Package
- Stable Two-Body Orbits
- Cryptocurrency Momentum Strategy Stock Analysis
- Evolution of Heat in 3D-Space by the Heat Equation
- Visual Proof of Kepler's Laws of Planetary Motion
- Electromagnetic Field Lines around a Dipole
- Visualizing Fractional Derivatives
- Hybrid Plots Package: ParametricContourPlot3D, GraphicsPlot, PlotND, ...
- Constructing Conic Sections
- Zooming in on the Mandelbrot Set
- Visualizing Four-Dimensional Surfaces
- Mathematics of Auditory Illusions
- Simple Harmonic Motion
- ...

Course Policies

The standard course policies apply: http://ugst.umd.edu/courserelatedpolicies.html Students must also fill out the Usage Agreement (uploaded on ELMS) regarding distribution of course materials.

