AutoEncoders & Kernels

CMSC 422
SOHEIL FEIZI
sfeizi@cs.umd.edu

Slides adapted from MARINE CARPUAT and GUY GOLAN
Today’s topics

• Nonlinear dimensionality reduction

• Kernel methods
PCA – Principal Component analysis

- Statistical approach for data compression and visualization
- Invented by Karl Pearson in 1901
- Weakness: linear components only.
Unlike the **PCA** now we can use activation functions to achieve non-linearity.

It has been shown that an AE without activation functions achieves the **PCA** capacity.
Uses

- The autoencoder idea was a part of NN history for decades (LeCun et al, 1987).

- Traditionally an autoencoder is used for dimensionality reduction and feature learning.

- Recently, the connection between autoencoders and latent space modeling has brought autoencoders to the front of generative modeling.
Simple Idea

- Given data x (no labels) we would like to learn the functions f (encoder) and g (decoder) where:

\[f(x) = s(wx + b) = z \]

and

\[g(z) = s(w'z + b') = \hat{x} \]

s.t. $h(x) = g(f(x)) = \hat{x}$

where h is an approximation of the identity function.

z is some latent representation or code and s is a non-linearity such as the sigmoid.

\hat{x} is x’s reconstruction.
Simple Idea

Learning the identity function seems trivial, but with added constraints on the network (such as limiting the number of hidden neurons or regularization) we can learn information about the structure of the data.

Trying to capture the distribution of the data (data specific!)
Training the AE

Using **Gradient Descent** we can simply train the model as any other FC NN with:

- Traditionally with *squared error* loss function

\[L(x, \hat{x}) = \|x - \hat{x}\|^2 \]

- Why?
AE Architecture

• Hidden layer is **Undercomplete** if smaller than the input layer
 - Compresses the input
 - Compresses well only for the training dist.

• Hidden nodes will be
 - Good features for the training distribution.
 - Bad for other types on input
Deep Autoencoder Example

- https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html - By Andrej Karpathy
Simple latent space interpolation
Simple latent space interpolation

\[Z_i = \alpha z_1 + (1 - \alpha) z_2 \]
Simple latent space interpolation
Kernel Methods
Beyond linear classification

• Problem: linear classifiers
 – Easy to implement and easy to optimize
 – But limited to linear decision boundaries

• What can we do about it?
 – Neural networks
 • Very expressive but harder to optimize (non-convex objective)
 – Today: Kernels
Kernel Methods

- Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

- How?
 - By mapping data to higher dimensions where it exhibits linear patterns
Classifying non-linearly separable data with a linear classifier: examples

Non-linearly separable data in 1D

Becomes linearly separable in new 2D space defined by the following mapping:

\[x \rightarrow \{ x, x^2 \} \]
Classifying non-linearly separable data with a linear classifier: examples

Non-linearly separable data in 2D

Becomes linearly separable in the 3D space defined by the following transformation:

\[\mathbf{x} = \{ x_1, x_2 \} \rightarrow \mathbf{z} = \{ x_1^2, \sqrt{2}x_1x_2, x_2^2 \} \]
Defining feature mappings

• Map an original feature vector \(x = \langle x_1, x_2, x_3, \ldots, x_D \rangle \) to an expanded version \(\phi(x) \)

• Example: quadratic feature mapping represents feature combinations

\[
\phi(x) = \langle 1, 2x_1, 2x_2, 2x_3, \ldots, 2x_D, \\
x_1^2, x_1x_2, x_1x_3, \ldots, x_1x_D, \\
x_2x_1, x_2^2, x_2x_3, \ldots, x_2x_D, \\
x_3x_1, x_3x_2, x_3^2, \ldots, x_2x_D, \\
\ldots, \\
x Dx_1, x Dx_2, x Dx_3, \ldots, x_D^2 \rangle
\]
Feature Mappings

- **Pros:** can help turn non-linear classification problem into linear problem

- **Cons:** “feature explosion” creates issues when training linear classifier in new feature space
 - More computationally expensive to train
 - More training examples needed to avoid overfitting
Kernel Methods

• Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

• How?
 – By mapping data to higher dimensions where it exhibits linear patterns
 – By rewriting linear models so that the mapping never needs to be explicitly computed
The Kernel Trick

- Rewrite learning algorithms so they only depend on dot products between two examples

- Replace dot product $\phi(x)^\top \phi(z)$ by kernel function $k(x, z)$ which computes the dot product implicitly
Example of Kernel function

Consider two examples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$

Let’s assume we are given a function k (kernel) that takes as inputs \mathbf{x} and \mathbf{z}

$$
k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^\top \mathbf{z})^2
$$

$$
= (x_1 z_1 + x_2 z_2)^2
$$

$$
= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2
$$

$$
= (x_1^2, \sqrt{2}x_1 x_2, x_2^2) \top (z_1^2, \sqrt{2}z_1 z_2, z_2^2)
$$

$$
= \phi(\mathbf{x}) \top \phi(\mathbf{z})
$$

The above k implicitly defines a mapping ϕ to a higher dimensional space

$$
\phi(\mathbf{x}) = \{x_1^2, \sqrt{2}x_1 x_2, x_2^2\}
Another example of Kernel Function (from CIML)

\[\phi(x) = \langle 1, 2x_1, 2x_2, 2x_3, \ldots, 2x_D, \\
x_1^2, x_1 x_2, x_1 x_3, \ldots, x_1 x_D, \\
x_2 x_1, x_2^2, x_2 x_3, \ldots, x_2 x_D, \\
x_3 x_1, x_3 x_2, x_3^2, \ldots, x_2 x_D, \\
\ldots, \\
x_D x_1, x_D x_2, x_D x_3, \ldots, x_D^2 \rangle \]

What is the function \(k(x,z) \) that can implicitly compute the dot product \(\phi(x) \cdot \phi(z) \)?

\[
\phi(x) \cdot \phi(z) = 1 + x_1 z_1 + x_2 z_2 + \cdots + x_D z_D + x_1^2 z_1^2 + \cdots + x_1 x_D z_1 z_D + \\
\cdots + x_D x_1 z_D z_1 + x_D x_2 z_D z_2 + \cdots + x_D^2 z_D^2 \tag{9.2}
\]

\[
= 1 + 2 \sum_d x_d z_d + \sum_d \sum_e x_d x_e z_d z_e \tag{9.3}
\]

\[
= 1 + 2 x \cdot z + (x \cdot z)^2 \tag{9.4}
\]

\[
= (1 + x \cdot z)^2 \tag{9.5}
\]
Kernels: Formally defined

Recall: Each kernel k has an associated feature mapping ϕ

ϕ takes input $x \in \mathcal{X}$ (input space) and maps it to \mathcal{F} ("feature space")

Kernel $k(x, z)$ takes two inputs and gives their similarity in \mathcal{F} space

$$
\phi : \mathcal{X} \rightarrow \mathcal{F} \\
k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, \quad k(x, z) = \phi(x)^\top \phi(z)
$$

\mathcal{F} needs to be a vector space with a dot product defined on it

Also called a *Hilbert Space*
Kernels: Mercer’s condition

• Can *any* function be used as a kernel function?
 • No! it must satisfy Mercer’s condition.

For k to be a kernel function

- There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
- The above is true if K is a positive definite function

\[
\int dx \int dz f(x)k(x,z)f(z) > 0 \quad \text{For all square integrable functions } f
\]
Kernels: Constructing combinations of kernels

Let k_1, k_2 be two kernel functions then the following are as well:

- $k(x, z) = k_1(x, z) + k_2(x, z)$: direct sum
- $k(x, z) = \alpha k_1(x, z)$: scalar product
- $k(x, z) = k_1(x, z)k_2(x, z)$: direct product
Commonly Used Kernel Functions

Linear (trivial) Kernel:
\[k(x, z) = x^\top z \] (mapping function \(\phi \) is identity - no mapping)

Quadratic Kernel:
\[k(x, z) = (x^\top z)^2 \quad \text{or} \quad (1 + x^\top z)^2 \]

Polynomial Kernel (of degree \(d \)):
\[k(x, z) = (x^\top z)^d \quad \text{or} \quad (1 + x^\top z)^d \]

Radial Basis Function (RBF) Kernel:
\[k(x, z) = \exp[-\gamma \|x - z\|^2] \]
The Kernel Trick

• Rewrite learning algorithms so they only depend on **dot products between two examples**

• Replace dot product $\phi(x)^T \phi(z)$ by **kernel function** $k(x, z)$ which computes the dot product **implicitly**
“Kernelizing” the perceptron

- Naïve approach: let’s explicitly train a perceptron in the new feature space

```
Algorithm 28 PerceptronTrain(D, MaxIter)
1: \( w \leftarrow 0, b \leftarrow 0 \) \hspace{1cm} // initialize weights and bias
2: for iter = 1 \ldots MaxIter do
3:     for all \((x,y) \in D\) do
4:         \( a \leftarrow w \cdot \phi(x) + b \) \hspace{1cm} // compute activation for this example
5:         if \( ya \leq 0 \) then
6:             \( w \leftarrow w + y \phi(x) \) \hspace{1cm} // update weights
7:             \( b \leftarrow b + y \) \hspace{1cm} // update bias
8:         end if
9:     end for
10: end for
11: return \( w, b \)
```

Can we apply the Kernel trick?
Not yet, we need to rewrite the algorithm using dot products between examples
“Kernelizing” the perceptron

• Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight vector w can always be represented as a linear combination of the expanded training data”

Proof by induction
(in CIML)
“Kernelizing” the perceptron

• We can use the perceptron representer theorem to compute activations as a **dot product** between examples

\[
\mathbf{w} \cdot \phi(x) + b = \left(\sum_n \alpha_n \phi(x_n) \right) \cdot \phi(x) + b \\
= \sum_n \alpha_n \left[\phi(x_n) \cdot \phi(x) \right] + b
\]

(9.6) definition of \(\mathbf{w} \)

(9.7) dot products are linear
“Kernelizing” the perceptron

Algorithm 29 \texttt{KernelizedPerceptronTrain}(D, MaxIter)

1: \(\alpha \leftarrow 0, b \leftarrow 0 \) \hspace{1cm} // initialize coefficients and bias
2: \textbf{for} iter = 1 \ldots MaxIter \textbf{do}
3: \hspace{1cm} \textbf{for all} \((x_n,y_n) \in D \) \textbf{do}
4: \hspace{2cm} a \leftarrow \sum_m \alpha_m \phi(x_m) \cdot \phi(x_n) + b \hspace{1cm} // compute activation for this example
5: \hspace{2cm} \textbf{if} y_n a \leq 0 \hspace{1cm} \textbf{then}
6: \hspace{3cm} \alpha_n \leftarrow \alpha_n + y_n \hspace{1cm} // update coefficients
7: \hspace{3cm} b \leftarrow b + y \hspace{1cm} // update bias
8: \hspace{2cm} \textbf{end if}
9: \hspace{1cm} \textbf{end for}
10: \textbf{end for}
11: \textbf{return} \(\alpha, b \)

- Same training algorithm, but doesn’t explicitly refers to weights w anymore only depends on dot products between examples
- We can apply the kernel trick!
Kernel Methods

• Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

• How?
 – By mapping data to higher dimensions where it exhibits linear patterns
 – By rewriting linear models so that the mapping never needs to be explicitly computed
Discussion

• Other algorithms can be kernelized:
 – See CIML for K-means

• Do Kernels address all the downsides of “feature explosion”?
 – Helps reduce computation cost during training
 – But overfitting remains an issue
What you should know

• Kernel functions
 – What they are, why they are useful, how they relate to feature combination

• Kernelized perceptron
 – You should be able to derive it and implement it