Colliders and Collisions

CMSC425.01 Spring 2019

Still at tables ...
Administrivia

• Next Hw and Project 2 coming
 • Project 2 – like Project 2 from previous semesters (animated characters, navmesh) but crabs on a beach!

• Mini-lectures coming – videos on single topics (Panopto on Elms)

• The M-word – Midterm.
Digression 1: Parametric curves (surfaces)

• Types
 • Circles
 • Cubic ($x^3 \approx$ human perception)
 • Spheres
 • Bezier curves

• Operations
 • Draw with for loop
 • Tangent is vector derivative
 • Vector representation

Coordinates are function of parameter t

$\langle x(t), y(t), z(t) \rangle$
Digression 2: Getting projections right

• Projection of \(v \) onto \(n \)

\[
v \cdot n = |v||n|\cos(\theta)
\]

• if \(|n| = 1 \) then \(v \cdot n = |v|\cos(\theta) \)
• if \(|n| = |v| = 1 \) then \(v \cdot n = \cos(\theta) \)

• When normalize – care about values
• When not – comparisons, signs
Today’s questions

1) Detecting collisions
2) Organizing spatial data
Standard collider shapes

(a) Axis-aligned boxes (AABB) (d) Capsules
(b) General bounding boxes (e) k-DOPs (k-discrete oriented polytope)
(c) Bounding spheres (ellipsoids)

Also – point, mesh, convex hull
What would you use?
Examples
Fitting the collider

- Data is a set of points
Fitting the collider

- Centroid and convex hull
Detecting collisions – how?

- AABB x AABB
- Box x Box
- Sphere x Sphere
- Capsule x Capsule
"Easy" cases

- AABB x AABB

- Sphere x Sphere
Box to box with rotations

- Rotate one to align with axes
Capsule to capsule

• Distance between two line segments
Other collisions

• Cone to point (shot gun)
• Sphere to plane (hw)
• Cylinder to point (practice)
• Point in polygon
• Polygon to polygon

Figure 1 - Crossings Test
How to do many efficiently?

• Hierarchical colliders
 • First test bounding box
 • If hit then test better collider

• Problem with many
 • Better than n-squared
 • No obvious sort in 2 or 3D
Sort and sweep algorithm

- Project bounding boxes on one coordinate
- Sort along that coordinate
- Filter tests to overlaps
Grid

• Overlap shapes on grid
• For each cell hit by shape, create ptr to shape

• If two shapes in same cell then need further test

• What size grid?
• How update grid?
Grid

- How treat moving and static objects?
 - One agent in static space?
How store grid?

• Row-column order (standard)
• Hashmap
• Space filling order
 • Hilbert
 • Morton
• Bit shuffle for Morton’s
 • See notes
Quadtrees: hierarchical space decomposition

• Four way division on midpoint
 • NW, NE, SW, SE
 • Midpt independent of data

• 3D
 • Octrees
K-d trees

- Alternating coordinates
- Divisions based on data
Skeletons and rigging

• Character animation
 • Create a skeleton
 • Define transforms between parts
 • Interpolation transforms to move
 • Rig with “flesh”
 • Create behavior animations
 • Blend between animations for smooth actions in game

• Can find as Unity Assets
• Use Mecanim tool

• https://www.youtube.com/watch?v=HPwu7e1wjV8
Step 1: Skeleton and transformations

- **Kinematics**
 - Forward – given joints and transformations, estimate end position
 - Reverse – given end position estimate transformations

- Forward – “easy”
- Reverse – hard!
Readings

- David Mount's lectures on Geometric Data structures and on Skeletal Animation and Kinematics

- Good tutorial on collisions