NavMeshes

CMSC425.01 Spring 2019

Still at tables ...
Administrivia

• Hw2 posted

• Project 2 outline ready, full description soon

• Practice exams linked

• Any choices on what we do after break?
 • Game design big subject, lots of topics we can choose from
Project 2: Crab Soup, Anyone?

- Goal: Player must retrieve treasure from chest on far island
- Problem: Mutated Crabs will attack
Project 2: Crab Soup, Anyone?

- **Goal:** Player must retrieve treasure from chest on far island
- **Problem:** Mutated Crabs will attack

New Unity elements:
- Terrain
- NavMesh
- Animated figures for Player and Crabs
Your instructor plays ...
Details

• Part 1: Make it to the treasure! Make a terrain with a NavMesh, navigate to the Treasure, and have the Crabs chase. Player humanoid, Crabs blocks. Win if you make it to the treasure without being “crabbed”

• Part 2: Animate Player and Crabs with Mixamo animations. Add a key that must be found to open chest, return to dock to win. Add UI graphic to show that key is picked up.

• Reach?: Make it underwater with swimming animation
• Free to: add elements to make it more playable, change theme if spirit is kept
Today’s question

How NPCs move around: NavMeshes
Navigation problems

- Navigating from place to place
- Dense crowd navigation
- Coordinated team movement
- Pursuit
- Moving complex/articulated shape
 - Piano movers problem (rigid)
 - Skeleton (articulated)
@UMD: Dinesh and Ming

- Dense crowd simulations
- How to move many agents naturally

- Video
Navigation Version 1: Use a map

Create graph structure

Use Dijkstra's algorithm

Shortest path

Assumption: World is rigid, limited lanes for movement
What is "shortest" path?

• Distance?
What is "shortest" path?

- Distance?
- Speed?
- Energy cost?
- Exposure to enemy?

- Hex map
 - 6 directions
 - Terrain types => speed costs
Navigation Version 2: Open Terrain

- Mix of obstacles and open spaces: "free space geometry"
- More options for direction
- How pick path?
How pick best path?

• Shortest may not be most natural (dashed line)
• Need way to detect natural corridors
Solution 1: Waypoint roadmap

• Preprocess space into graph of waypoints
• Place waypoints along natural corridors
Solution 1: Waypoint roadmap

• Preprocess space into graph of waypoints
• Place waypoints along natural corridors
• Drawbacks
 • Could need lots of way points
 • Harder to plan for coordinated team movement
Solution 2: Navmesh

• Preprocess space into mesh of free areas as polygons
• Plan movement between polygons
 • Between edges
 • Between centers
• Multiple level graph search
 • First between regions
 • Then pick entry and exit points
Navmeshes can be

• Labeled with different terrain types
• Set with "gates"

• 2D manifolds which are topologically complex (eg, non-planar)
Using Navmesh

• Inside region use direct path

• Regions (and subregions) can be labeled with different terrain types and costs
Creating Navmeshes from terrain

• Step 1: Find walkable surfaces
 • As large polygon "map"

• Step 2: Simplify boundaries
 • Simplify polygon "map"

• Step 3: Triangulate "map"
 • Cover with set of triangles
Creating Navmeshes from terrain

• Step 1: Find walkable surfaces based on agent height, width, slope ability

• Variation on piano movers problem
Creating Navmeshes from terrain

• Step 2: Simplify boundaries
 • Simplify polygon "map"

• Recursive refinement of straight line

Fig. 3: The Ramer-Douglas-Peucker Algorithm.
Creating Navmeshes from terrain

• **Step 3**: Triangulate "map"
 • Cover with set of triangles

• Bridge holes

• Cut ears (!)

![diagram](image-url)
Use Navmesh: find path

- Discretize by adding points
- Find shortest path

(a)
(b)
(c)
Use Navmesh: refine

• Smooth and clean path
Navmeshes in Unity

• Create terrain
 • Terrain editor

• Set agent navigation properties
 • Height, width of agent
 • Slope capability

• Bake Navmesh
 • Finds navigable regions
 • Creates mesh
Agent properties

• Radius, Height
• Step height
• Max slope

• Can have multiple agent types
Off mesh links

Agent radius controls how far a drop down link can reach, and Drop Height controls how long drops are connection.

Jump Distance controls how jump-across links are calculated. Note that the destination has to be at the same level as start.

Generated Off Mesh Links

- Drop Height: 4.1
- Jump Distance: 4
Question

• How does this all relate to colliders?
Readings

• Look at Unity manual and tutorials
 • Terrain
 • https://docs.unity3d.com/Manual/terrain-UsingTerrains.html
 • NavMesh
 • https://unity3d.com/learn/tutorials/topics/navigation/navmesh-agent
 • https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html
 • Animation
 • https://unity3d.com/learn/tutorials/topics/animation/animate-anything-mecanim
 • https://unity3d.com/learn/tutorials/s/animation